# Exponential Inequalities using Logarithms

Inequalities worked in the same way, except there was a change of sign when dividing or multiplying both sides of the inequality by a negative number.

\begin{array}{|c|c|c|} \hline
\log_{2}{3}=1.6>0 & \log_{5}{3}=0.7>0 & \log_{10}{3}=0.5>0 \\ \hline
\log_{2}{2}=1>0 & \log_{5}{2}=0.4>0 & \log_{10}{2}=0.3>0 \\ \hline
\log_{2}{1}=0 & \log_{5}{1}=0 & \log_{10}{1}=0 \\ \hline
\log_{2}{0.5}=-1<0 & \log_{5}{0.5}=-0.4<0 & \log_{10}{0.5}=-0.3<0 \\ \hline
\log_{2}{0.1}=-3.3<0 & \log_{5}{0.1}=-1.4<0 & \log_{10}{0.1}=-1<0 \\ \hline
\end{array}

Thus we can find the following properties.
\begin{array}{|c|c|c|} \hline
a<1 & a=1 & a>1 \\ \hline
\log_{x}{a} <0 & \log_{x}{a}=0 & \log_{x}{a} >0 \\ \hline
\end{array}

$\textit{Case 1}$

\require{AMSsymbols} \begin{align} \displaystyle x\log_{10}{2} &> 5 \\ x &\color{green}> \dfrac{5}{\log_{10}{2}} \\ \end{align}

$\textit{Case 2}$

\require{AMSsymbols} \begin{align} \displaystyle x\log_{10}{0.5} &> 5 \\ x &\color{red}< \dfrac{5}{\log_{10}{0.5}} \\ \end{align}

### Example 1

Solve $2^x > 9$ for $x$, correct to $3$ significant figures.

\begin{align} \displaystyle 2^x &> 9 \\ \log_{10}{2^x} &> \log_{10}{9} \\ x\log_{10}{2} &> \log_{10}{9} \\ x &> \dfrac{\log_{10}{9}}{\log_{10}{2}} \\ x &> 3.1699 \cdots \\ \therefore x &> 3.17 \\ \end{align}

### Example 2

Solve $0.5^x \le 3$ for $x$, correct to $3$ significant figures.

\begin{align} \displaystyle 0.5^x &\le 3 \\ \log_{10}{0.5}^x &\le \log_{10}{3} \\ x\log_{10}{0.5} &\le \log_{10}{3} \\ x &\ge \dfrac{\log_{10}{3}}{\log_{10}{0.5}} \\ x &\ge -1.5849 \cdots \\ \therefore x &\ge -1.58 \\ \end{align}

Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## 12 Patterns of Logarithmic Equations

Solving logarithmic equations is done using properties of logarithmic functions, such as multiplying logs and changing the base and reciprocals of logarithms.  \large \begin{aligned}…