# Exponential Inequalities using Logarithms

Inequalities worked in the same way, except there was a change of sign when dividing or multiplying both sides of the inequality by a negative number.

\begin{array}{|c|c|c|} \hline
\log_{2}{3}=1.6>0 & \log_{5}{3}=0.7>0 & \log_{10}{3}=0.5>0 \\ \hline
\log_{2}{2}=1>0 & \log_{5}{2}=0.4>0 & \log_{10}{2}=0.3>0 \\ \hline
\log_{2}{1}=0 & \log_{5}{1}=0 & \log_{10}{1}=0 \\ \hline
\log_{2}{0.5}=-1<0 & \log_{5}{0.5}=-0.4<0 & \log_{10}{0.5}=-0.3<0 \\ \hline
\log_{2}{0.1}=-3.3<0 & \log_{5}{0.1}=-1.4<0 & \log_{10}{0.1}=-1<0 \\ \hline
\end{array}

Thus we can find the following properties.
\begin{array}{|c|c|c|} \hline
a<1 & a=1 & a>1 \\ \hline
\log_{x}{a} <0 & \log_{x}{a}=0 & \log_{x}{a} >0 \\ \hline
\end{array}

$\textit{Case 1}$

\require{AMSsymbols} \begin{align} \displaystyle x\log_{10}{2} &> 5 \\ x &\color{green}> \dfrac{5}{\log_{10}{2}} \\ \end{align}

$\textit{Case 2}$

\require{AMSsymbols} \begin{align} \displaystyle x\log_{10}{0.5} &> 5 \\ x &\color{red}< \dfrac{5}{\log_{10}{0.5}} \\ \end{align}

### Example 1

Solve $2^x > 9$ for $x$, correct to $3$ significant figures.

\begin{align} \displaystyle 2^x &> 9 \\ \log_{10}{2^x} &> \log_{10}{9} \\ x\log_{10}{2} &> \log_{10}{9} \\ x &> \dfrac{\log_{10}{9}}{\log_{10}{2}} \\ x &> 3.1699 \cdots \\ \therefore x &> 3.17 \\ \end{align}

### Example 2

Solve $0.5^x \le 3$ for $x$, correct to $3$ significant figures.

\begin{align} \displaystyle 0.5^x &\le 3 \\ \log_{10}{0.5}^x &\le \log_{10}{3} \\ x\log_{10}{0.5} &\le \log_{10}{3} \\ x &\ge \dfrac{\log_{10}{3}}{\log_{10}{0.5}} \\ x &\ge -1.5849 \cdots \\ \therefore x &\ge -1.58 \\ \end{align}