Exponential Equations using Logarithms


We can find solutions to simple exponential equations where we could make equal bases and then equate exponents (indices).

For example, $2^{x}=8$ can be written as $2^x = 2^3$. Therefore the solution is $x=3$.

However, it is not always easy to make the bases the same such as $2^x=5$. In these situations, we use $\textit{logarithms}$ to find the exact solution.

If the base is not the same and the numbers cannot be written with the same base then logarithms can be used.
It is possible to take the logarithm of both sides of an equation provided the same base is used.

Example 1

Solve $10^x = 9$ for $x$, correct to $3$ decimal places.

\( \begin{align} \displaystyle
10^x &= 9 \\
x &= \log_{10}{9} \\
x &= 0.95424 \cdots &\text{using a calculator}\\
\therefore x &= 0.954 \\
\end{align} \)

Example 2

Solve $2^{x+1} = 12$ for $x$, correct to $3$ decimal places.

\( \begin{align} \displaystyle
2^{x+1} &= 12 \\
\log_{10}{2^{x+1}} &= \log_{10}{12} \\
(x+1)\log_{10}{2} &= \log_{10}{12} \\
x+1 &= \dfrac{\log_{10}{12}}{\log_{10}{2}} \\
x &= \dfrac{\log_{10}{12}}{\log_{10}{2}} -1 \\
x &= 2.58496 \cdots \\
\therefore x &= 2.585 \\
\end{align} \)

Example 3

Solve $\Big(\dfrac{1}{2}\Big)^x = 7$ for $x$, correct to $3$ decimal places.

\( \begin{align} \displaystyle
\Big(\dfrac{1}{2}\Big)^x &= 7 \\
(2^{-1})^x &= 7 \\
2^{-x} &= 7 \\
\log_{10}{2^{-x}} &= \log_{10}{7} \\
-x\log_{10}{2} &= \log_{10}{7} \\
-x &= \dfrac{\log_{10}{7}}{\log_{10}{2}} \\
x &= -\dfrac{\log_{10}{7}}{\log_{10}{2}} \\
x &= -2.80735 \cdots &\text{using a calculator}\\
\therefore x &= -2.807 \\
\end{align} \)

Example 4

Solve $12 \times 5^{0.08x} = 72$ for $x$, correct to $3$ significant figures.

\( \begin{align} \displaystyle
5^{0.08x} &= 6 \\
\log_{10}{5^{0.08x}} &= \log_{10}{6} \\
0.08x\log_{10}{5} &= \log_{10}{6} \\
0.08x &= \dfrac{\log_{10}{6}}{\log_{10}{5}} \\
x &= \dfrac{1}{0.08} \times \dfrac{\log_{10}{6}}{\log_{10}{5}} \\
x &= 13.91603 \cdots \\
\therefore x &= 13.9 \\
\end{align} \)

Example 5

Rearrange $y=25 \times 2^{0.5x}$ to give $x$ in terms of $y$.

\( \begin{align} \displaystyle
25 \times 2^{0.5x} &= y \\
2^{0.5x} &= \dfrac{y}{25} \\
0.5x &= \log_{2}{\dfrac{y}{25}} \\
x &= \dfrac{1}{0.5}\log_{2}{\dfrac{y}{25}} \\
\therefore x &= 2\log_{2}{\dfrac{y}{25}} \\
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *