Drawing Venn Diagrams Effectively



Consider the following situation to illustrate through Venn diagrams.

Two Circles

There are \( 50 \) students in a certain high school. \( 16 \) study Physics, \( 13 \) study Chemistry, and \( 15 \) study both Physics and Chemistry. Illustrate this information on a Venn diagram.

$$ \begin{align}
a+b+c+d &= 50 \text{ total students} \\
a+b &= 31 \text{ Physics} \\
b+c &= 28 \text{ Chemistry} \\
b &= 15 \text{ Physics and Chemistry} \\
\end{align} $$

$$ \begin{align}
\text{Substitute } b &=15 \text{ into } a+b=31 \\
a+15 &= 31 \\
a &= 16 \\
\end{align} $$

$$ \begin{align}
\text{Substitute } b &=15 \text{ into } b+c=28 \\
15+c &= 28 \\
c &= 13 \\
\end{align} $$

$$ \begin{align}
\text{Substitute } a =16, b=15, c &=13 \text{ into } a+b+c+d=50 \\
16 +15+13+d &= 50 \\
d &= 6 \\
\end{align} $$

Three Circles

Now, let’s take a look at a situation with three circles.

A school has three subjects offered: Arts, Biology and Chemistry.

\( 36 \) students chose Arts, \( 39 \) chose Biology, and \( 37 \) chose Chemistry. Of those, \( 9 \) chose both Arts and Biology, \( 12 \) chose both Biology and Chemistry, and \( 11 \) chose both Arts and Chemistry. \( 5 \) chose all three subjects.

$$a=5$$

$$ \begin{align}
a+d &= 9 \\
5+d &= 9 \\
d &= 4 \\
\end{align} $$

$$ \begin{align}
a+b &= 12 \\
5+b &= 12 \\
b &= 7 \\
\end{align} $$

$$ \begin{align}
a+c &= 11 \\
5+c &= 11 \\
c &= 6 \\
\end{align} $$

$$ \begin{align}
g+4+5+6 &= 36 \\
g &= 21 \\
\end{align} $$

$$ \begin{align}
e + 4+5+7 &= 39 \\
e &= 23 \\
\end{align} $$

$$ \begin{align}
f + 6+5+7 &= 37 \\
f &= 19 \\
\end{align} $$

$$ \begin{align}
h &= 100 -(21+4+5+6+7+23+19) \\
&= 15 \\
\end{align} $$





Your email address will not be published. Required fields are marked *