Drawing Venn Diagrams Effectively

Two Circles
There are \( 50 \) students in a certain high school. \( 16 \) study Physics, \( 13 \) study Chemistry, and \( 15 \) study both Physics and Chemistry. Illustrate this information on a Venn diagram.

$$ \begin{align}
a+b+c+d &= 50 \text{ total students} \\
a+b &= 31 \text{ Physics} \\
b+c &= 28 \text{ Chemistry} \\
b &= 15 \text{ Physics and Chemistry}
\end{align} $$

$$ \begin{align}
\text{Substitute } b &=15 \text{ into } a+b=31 \\
a+15 &= 31 \\
a &= 16
\end{align} $$

$$ \begin{align}
\text{Substitute } b &=15 \text{ into } b+c=28 \\
15+c &= 28 \\
c &= 13
\end{align} $$

$$ \begin{align}
\text{Substitute } a =16, b=15, c &=13 \text{ into } a+b+c+d=50 \\
16 +15+13+d &= 50 \\
d &= 6
\end{align} $$

Three Circles
Now, let’s take a look at a situation with three circles.
A school has three subjects offered: Arts, Biology and Chemistry.
\( 36 \) students chose Arts, \( 39 \) chose Biology, and \( 37 \) chose Chemistry. Of those, \( 9 \) chose both Arts and Biology, \( 12 \) chose both Biology and Chemistry, and \( 11 \) chose both Arts and Chemistry. \( 5 \) chose all three subjects.

$$a=5$$

$$ \begin{align}
a+d &= 9 \\
5+d &= 9 \\
d &= 4
\end{align} $$

$$ \begin{align}
a+b &= 12 \\
5+b &= 12 \\
b &= 7
\end{align} $$

$$ \begin{align}
a+c &= 11 \\
5+c &= 11 \\
c &= 6
\end{align} $$

$$ \begin{align}
g+4+5+6 &= 36 \\
g &= 21
\end{align} $$

$$ \begin{align}
e + 4+5+7 &= 39 \\
e &= 23
\end{align} $$

$$ \begin{align}
f + 6+5+7 &= 37 \\
f &= 19
\end{align} $$

$$ \begin{align}
h &= 100-(21+4+5+6+7+23+19) \\
&= 15
\end{align} $$

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses