Division using Exponents (Indices)


If we are given $a^8 \div a^3$, we can also write this as $\dfrac{a^8}{a^3}$, which means $\dfrac{a \times a \times a \times a \times a \times a \times a \times a}{a \times a \times a}$.
As there are $8$ factors of $a$ on the top line (numerator), and $3$ factors of $a$ on the bottom line (denominator), we can cancel $3$ of them, giving us
$$ \begin{align} \displaystyle \require{cancel}
&\dfrac{\cancel{a} \times \cancel{a} \times \cancel{a} \times a \times a \times a \times a \times a}{\cancel{a} \times \cancel{a} \times \cancel{a}} \\
&= a \times a \times a \times a \times a \\
&= a^5 \\
\end{align} $$

Example 1

Simplify $\dfrac{x^7}{x^4}$ after first writing in factor form.

\( \begin{align} \displaystyle \require{cancel}
\dfrac{x^7}{x^4} &= \dfrac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x} \\
&= \dfrac{\cancel{x} \times \cancel{x} \times \cancel{x} \times \cancel{x} \times x \times x \times x}{\cancel{x} \times \cancel{x} \times \cancel{x} \times \cancel{x}} \\
&= x \times x \times x \\
&= x^3 \\
\end{align} \)

An alternative solution can be formed by examining the result. We can see that the exponent (index) in the answer is the result of subtracting the exponents (indices) in the question.

$$ \begin{align} \displaystyle \require{cancel}
a^8 \div a^3 &= a^{8-3} \\
&= a^5 \\
\end{align} $$

We can subtract the exponents (indices) when dividing bases that are the same.

$$ \begin{align} \displaystyle
a^x \div a^y &=\dfrac{a^x}{a^y} \\
&= a^{x-y} \\
\end{align} $$

Example 2

Simplify $8^7 \div 8^5$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
8^7 \div 8^5 &= 8^{7-5} \\
&= 8^2 \\
\end{align} \)

Example 3

Simplify $\dfrac{10^9}{10^6}$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
\dfrac{10^9}{10^6} &= 10^{9-6} \\
&= 10^3 \\
\end{align} \)

As with multiplication of algebraic expressions, when dividing we divide the coefficients normally before applying the law of exponent (index law). to each pronumeral separately.

Example 4

Simplify $24x^7 \div 8x^2$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
24x^7 \div 8x^2 &= \dfrac{24x^7}{8x^2} \\
&= \dfrac{24}{8} \times \dfrac{x^7}{x^2} \\
&= 3x^{7-2} \\
&= 3x^5 \\
\end{align} \)

Example 5

Simplify $\dfrac{25x^6 \times 9y^{11}}{15x^4 \times 3y^5}$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
\dfrac{25x^6 \times 9y^{11}}{15x^4 \times 3y^5} &= \dfrac{25 \times 9}{15 \times 3} \times \dfrac{x^6}{x^4} \times \dfrac{y^{11}}{y^5} \\
&= 5 \times x^{6-4} \times y^{11-5} \\
&= 5x^2y^6
\end{align} \)

In examples where the coefficients do not divide evenly, we simplify the fraction that is formed by them.

Example 6

Simplify $\dfrac{7x^3 \times 4x^6}{12x^5}$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
\dfrac{7x^3 \times 4x^6}{12x^5} &= \dfrac{7 \times 4}{12} \times \dfrac{x^3 \times x^6}{x^5} \\
&= \dfrac{7}{3} \times x^{3 + 6 – 5} \\
&= \dfrac{7}{3}x^4 \\
\end{align} \)

Example 7

Evaluate $\dfrac{2^x}{2^{x-3}}$ using the law of exponents (index law).

\( \begin{align} \displaystyle \require{cancel}
\dfrac{2^x}{2^{x-3}} &= 2^{x-(x-3)} \\
&= 2^{x-x+3} \\
&= 2^3 \\
&= 8 \\
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *