Derivative of Logarithmic Functions

$$ \large \dfrac{d}{dx}\log_e{x} = \dfrac{1}{x} \\
\dfrac{d}{dx}\log_e{f(x)} = \dfrac{1}{f(x)} \times f'(x)$$
Example 1
Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{(x^2+1)}$.
\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{(x^2+1)} \\
&= \dfrac{1}{x^2+1} \times \dfrac{d}{dx}(x^2+1) \\
&= \dfrac{1}{x^2+1} \times 2x \\
&= \dfrac{2x}{x^2+1} \\
\end{align} \)
Example 2
Find $\displaystyle \dfrac{dy}{dx}$ if $y=x^2\log_e{(2x-1)}$.
\( \begin{align} \displaystyle \require{AMSsymbols} \require{color}
\dfrac{dy}{dx} &= \dfrac{d}{dx}x^2 \times \log_e{(2x-1)} + x^2 \times \dfrac{d}{dx}\log_e{(2x-1)} &\color{red} \text{product rule}\\
&= 2x \times \log_e{(2x-1)} + x^2 \times \dfrac{1}{2x-1} \times \dfrac{d}{dx}{(2x-1)} \\
&= 2x\log_e{(2x-1)} + x^2 \times \dfrac{1}{2x-1} \times 2 \\
&= 2x\log_e{(2x-1)} + \dfrac{2x^2}{2x-1}
\end{align} \)
The laws of logarithmic can help to find the derivative of logarithmic Functions more easily.
$$ \begin{align}
\log_e{(ab)} &= \log_e{a} + \log_e{b} \\
\log_e{\dfrac{a}{b}} &= \log_e{a}-\log_e{b} \\
\log_ea^n &= n\log_e{a} \\
\end{align} $$
Example 3
Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{(x^2+1)(x^3-1)}$.
\( \begin{align} \displaystyle
y &= \log_e{(x^2+1)(x^3-1)} \\
&= \log_e{(x^2+1)} + \log_e{(x^3-1)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{(x^2+1)} + \dfrac{d}{dx}\log_e{(x^3-1)} \\
&= \dfrac{1}{x^2+1}\times \dfrac{d}{dx}{(x^2+1)} + \dfrac{1}{x^3-1} \times \dfrac{d}{dx}(x^3-1) \\
&= \dfrac{1}{x^2+1}\times 2x + \dfrac{1}{x^3-1} \times 3x^2 \\
&= \dfrac{2x}{x^2+1} + \dfrac{3x^2}{x^3-1}
\end{align} \)
Example 4
Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{\sqrt{x^2+2}}$.
\( \begin{align} \displaystyle \require{color}
y &= \log_e{\sqrt{x^2+2}} \\
&= \log_e{(x^2+2)^{\frac{1}{2}}} \\
&= \dfrac{1}{2}\log_e{(x^2+2)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\dfrac{1}{2}\log_e{(x^2+2)} \\
&= \dfrac{1}{2} \times \dfrac{1}{x^2+2} \times \dfrac{d}{dx}(x^2+2) \\
&= \dfrac{1}{2} \times \dfrac{1}{x^2+2} \times 2x \\
&= \dfrac{x}{x^2+2}
\end{align} \)
Example 5
Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{\dfrac{x^2}{(x+3)(x-5)}}$.
\( \begin{align} \displaystyle \require{color}
y &= \log_e{\dfrac{x^2}{(x+3)(x-5)}} \\
&= \log_e{x^2}-\log_e{(x+3)}-\log_e{(x-5)} \\
&= 2\log_e{x}-\log_e{(x+3)}-\log_e{(x-5)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}2\log_e{x}-\dfrac{d}{dx}\log_e{(x+3)}-\dfrac{d}{dx}\log_e{(x-5)} \\
&= \dfrac{2}{x}-\dfrac{1}{x+3}-\dfrac{1}{x-5}
\end{align} \)
Example 6
Compare the derivatives of $\log_e{x^3}$ and $(\log_e{x})^3$.
\( \begin{align} \displaystyle \require{color}
\dfrac{d}{dx}\log_e{x^3} &= \dfrac{d}{dx}3\log_e{x} \\
&= \dfrac{3}{x} \\
\dfrac{d}{dx}(\log_e{x})^3 &= 3(\log_e{x})^{3-1} \times \dfrac{d}{dx}\log_e{x} \\
&= 3(\log_e{x})^{2} \times \dfrac{1}{x} \\
&= \dfrac{3(\log_e{x})^{2}}{x}
\end{align} \)
Extension Examples
These Extension Examples require to have some prerequisite skills, including;
\( \begin{align} \displaystyle
\dfrac{d}{dx}\sin{x} &= \cos{x} \\
\dfrac{d}{dx}\cos{x} &= -\sin{x} \\
\dfrac{d}{dx}e^x &= e^x \\
\end{align} \)
Example 7
Find $\displaystyle \dfrac{dy}{dx}$ of $e^x\log_e{x}$, known that $\dfrac{d}{dx}e^x = e^x$.
\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{d}{dx}e^x \times \log_e{x} + e^x \times \dfrac{d}{dx}\log_e{x} \\
&= e^x \times \log_e{x} + e^x \times \dfrac{1}{x} \\
&= e^x\log_e{x} + \dfrac{e^x}{x}
\end{align} \)
Example 8
Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\log_e{\dfrac{\sin{x}}{\cos{x}}}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$ and $\dfrac{d}{dx}\cos{x} = -\sin{x}$.
\( \begin{align} \displaystyle
y &= \log_e{\dfrac{\sin{x}}{\cos{x}}} \\
&= \log_e{\sin{x}}-\log_e{\cos{x}} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{\sin{x}}-\dfrac{d}{dx}\log_e{\cos{x}} \\
&= \dfrac{1}{\sin{x}} \times \dfrac{d}{dx}\sin{x}-\dfrac{1}{\cos{x}} \times \dfrac{d}{dx}\cos{x}\\
&= \dfrac{1}{\sin{x}} \times \cos{x}-\dfrac{1}{\cos{x}} \times (-\sin{x})\\
&= \dfrac{\cos{x}}{\sin{x}} + \dfrac{\sin{x}}{\cos{x}}
\end{align} \)
Example 9
Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\log_e{\sin{x^2}}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$.
\( \begin{align} \displaystyle
\dfrac{d}{dx} &= \dfrac{d}{dx}\log_e{\sin{x^2}} \\
&= \dfrac{1}{\sin{x^2}} \times \dfrac{d}{dx} \sin{x^2} \\
&= \dfrac{1}{\sin{x^2}} \times \cos{x^2} \times \dfrac{d}{dx}x^2\\
&= \dfrac{1}{\sin{x^2}} \times \cos{x^2} \times 2x \\
&= \dfrac{2x\cos{x^2}}{\sin{x^2}}
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses