Derivative of Logarithmic Functions


$$\dfrac{d}{dx}\log_e{x} = \dfrac{1}{x} \\
\dfrac{d}{dx}\log_e{f(x)} = \dfrac{1}{f(x)} \times f'(x)$$

Example 1

Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{(x^2+1)}$.

\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{(x^2+1)} \\
&= \dfrac{1}{x^2+1} \times \dfrac{d}{dx}(x^2+1) \\
&= \dfrac{1}{x^2+1} \times 2x \\
&= \dfrac{2x}{x^2+1} \\
\end{align} \)

Example 2

Find $\displaystyle \dfrac{dy}{dx}$ if $y=x^2\log_e{(2x-1)}$.

\( \begin{align} \displaystyle \require{color}
\dfrac{dy}{dx} &= \dfrac{d}{dx}x^2 \times \log_e{(2x-1)} + x^2 \times \dfrac{d}{dx}\log_e{(2x-1)} &\color{red} \text{product rule}\\
&= 2x \times \log_e{(2x-1)} + x^2 \times \dfrac{1}{2x-1} \times \dfrac{d}{dx}{(2x-1)} \\
&= 2x\log_e{(2x-1)} + x^2 \times \dfrac{1}{2x-1} \times 2 \\
&= 2x\log_e{(2x-1)} + \dfrac{2x^2}{2x-1} \\
\end{align} \)

The laws of logarithmic can help to find the derivative of logarithmic Functions more easily.
$$ \begin{align}
\log_e{(ab)} &= \log_e{a} + \log_e{b} \\
\log_e{\dfrac{a}{b}} &= \log_e{a} – \log_e{b} \\
\log_ea^n &= n\log_e{a} \\
\end{align} $$

Example 3

Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{(x^2+1)(x^3-1)}$.

\( \begin{align} \displaystyle \require{color}
y &= \log_e{(x^2+1)(x^3-1)} \\
&= \log_e{(x^2+1)} + \log_e{(x^3-1)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{(x^2+1)} + \dfrac{d}{dx}\log_e{(x^3-1)} \\
&= \dfrac{1}{x^2+1}\times \dfrac{d}{dx}{(x^2+1)} + \dfrac{1}{x^3-1} \times \dfrac{d}{dx}(x^3-1) \\
&= \dfrac{1}{x^2+1}\times 2x + \dfrac{1}{x^3-1} \times 3x^2 \\
&= \dfrac{2x}{x^2+1} + \dfrac{3x^2}{x^3-1} \\
\end{align} \)

Example 4

Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{\sqrt{x^2+2}}$.

\( \begin{align} \displaystyle \require{color}
y &= \log_e{\sqrt{x^2+2}} \\
&= \log_e{(x^2+2)^{\frac{1}{2}}} \\
&= \dfrac{1}{2}\log_e{(x^2+2)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\dfrac{1}{2}\log_e{(x^2+2)} \\
&= \dfrac{1}{2} \times \dfrac{1}{x^2+2} \times \dfrac{d}{dx}(x^2+2) \\
&= \dfrac{1}{2} \times \dfrac{1}{x^2+2} \times 2x \\
&= \dfrac{x}{x^2+2} \\
\end{align} \)

Example 5

Find $\displaystyle \dfrac{dy}{dx}$ if $y=\log_e{\dfrac{x^2}{(x+3)(x-5)}}$.

\( \begin{align} \displaystyle \require{color}
y &= \log_e{\dfrac{x^2}{(x+3)(x-5)}} \\
&= \log_e{x^2} – \log_e{(x+3)} – \log_e{(x-5)} \\
&= 2\log_e{x} – \log_e{(x+3)} – \log_e{(x-5)} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}2\log_e{x} – \dfrac{d}{dx}\log_e{(x+3)} – \dfrac{d}{dx}\log_e{(x-5)} \\
&= \dfrac{2}{x} – \dfrac{1}{x+3} – \dfrac{1}{x-5} \\
\end{align} \)

Example 6

Compare the derivatives of $\log_e{x^3}$ and $(\log_e{x})^3$.

\( \begin{align} \displaystyle \require{color}
\dfrac{d}{dx}\log_e{x^3} &= \dfrac{d}{dx}3\log_e{x} \\
&= \dfrac{3}{x} \\
\dfrac{d}{dx}(\log_e{x})^3 &= 3(\log_e{x})^{3-1} \times \dfrac{d}{dx}\log_e{x} \\
&= 3(\log_e{x})^{2} \times \dfrac{1}{x} \\
&= \dfrac{3(\log_e{x})^{2}}{x} \\
\end{align} \)

Extension Examples


These Extension Examples require to have some prerequisite skills including;
\( \begin{align} \displaystyle
\dfrac{d}{dx}\sin{x} &= \cos{x} \\
\dfrac{d}{dx}\cos{x} &= -\sin{x} \\
\dfrac{d}{dx}e^x &= e^x \\
\end{align} \)

Example 7

Find $\displaystyle \dfrac{dy}{dx}$ of $e^x\log_e{x}$, known that $\dfrac{d}{dx}e^x = e^x$.

\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{d}{dx}e^x \times \log_e{x} + e^x \times \dfrac{d}{dx}\log_e{x} \\
&= e^x \times \log_e{x} + e^x \times \dfrac{1}{x} \\
&= e^x\log_e{x} + \dfrac{e^x}{x} \\
\end{align} \)

Example 8

Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\log_e{\dfrac{\sin{x}}{\cos{x}}}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$ and $\dfrac{d}{dx}\cos{x} = -\sin{x}$.

\( \begin{align} \displaystyle
y &= \log_e{\dfrac{\sin{x}}{\cos{x}}} \\
&= \log_e{\sin{x}} – \log_e{\cos{x}} \\
\dfrac{dy}{dx} &= \dfrac{d}{dx}\log_e{\sin{x}} – \dfrac{d}{dx}\log_e{\cos{x}} \\
&= \dfrac{1}{\sin{x}} \times \dfrac{d}{dx}\sin{x} – \dfrac{1}{\cos{x}} \times \dfrac{d}{dx}\cos{x}\\
&= \dfrac{1}{\sin{x}} \times \cos{x} – \dfrac{1}{\cos{x}} \times (-\sin{x})\\
&= \dfrac{\cos{x}}{\sin{x}} + \dfrac{\sin{x}}{\cos{x}} \\
\end{align} \)

Example 9

Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\log_e{\sin{x^2}}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$.

\( \begin{align} \displaystyle
\dfrac{d}{dx} &= \dfrac{d}{dx}\log_e{\sin{x^2}} \\
&= \dfrac{1}{\sin{x^2}} \times \dfrac{d}{dx} \sin{x^2} \\
&= \dfrac{1}{\sin{x^2}} \times \cos{x^2} \times \dfrac{d}{dx}x^2\\
&= \dfrac{1}{\sin{x^2}} \times \cos{x^2} \times 2x \\
&= \dfrac{2x\cos{x^2}}{\sin{x^2}}
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published.