Definite Integrals

The Fundamental Theorem of Calculus
For a continuous function $f(x)$ with antiderivative $F(x)$, $$\displaystyle \int_{a}^{b}{f(x)}dx = F(b)-F(a)$$
Properties of Definite Integrals
The following properties of definite integrals can all be deducted from the fundamental theorem of calculus:
- $\displaystyle \int_{a}^{a}{f(x)}dx = 0$
- $\displaystyle \int_{b}^{a}{f(x)}dx = -\int_{a}^{b}{f(x)}dx$
- $\displaystyle \int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx = \int_{c}^{a}{f(x)}dx$
- $\displaystyle \int_{b}^{a}{\big[f(x) \pm g(x)\big]}dx = \int_{b}^{a}{f(x)}dx \pm \int_{b}^{a}{g(x)}dx$
- $\displaystyle \int_{b}^{a}{c}dx = c(a-b)$
- $\displaystyle \int_{b}^{a}{cf(x)}dx = c\int_{b}^{a}{f(x)}dx$
Example 1
Prove $\displaystyle \int_{a}^{a}{f(x)}dx = 0$.
\( \begin{align} \displaystyle
\int_{a}^{a}{f(x)}dx &= \big[F(x)\big]_{a}^{a} \\
&= F(a)-F(a) \\
&= 0
\end{align} \)
Example 2
Prove $\displaystyle \int_{b}^{a}{f(x)}dx = -\int_{a}^{b}{f(x)}dx$.
\( \begin{align} \displaystyle
\int_{b}^{a}{f(x)}dx &= \big[F(x)\big]_{a}^{b} \\
&= F(a)-F(b) \\
&= -\big[F(b)-F(a)\big] \\
&= -\int_{a}^{b}{f(x)}dx
\end{align} \)
Example 3
Prove $\displaystyle \int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx = \int_{c}^{a}{f(x)}dx$.
\( \begin{align} \displaystyle
\int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx &= \big[F(x)\big]_{b}^{a} + \big[F(x)\big]_{c}^{b} \\
&= \big[F(a)-F(b)\big] + \big[F(b)-F(c)\big] \\
&= F(a)-F(c) \\
&= \int_{c}^{a}{f(x)}dx
\end{align} \)
Example 4
Prove $\displaystyle \int_{b}^{a}{\big[f(x) + g(x)\big]}dx = \int_{b}^{a}{f(x)}dx + \int_{b}^{a}{g(x)}dx$.
\( \begin{align} \displaystyle
\int_{b}^{a}{\big[f(x) + g(x)\big]}dx &= \big[F(x) + G(x)\big]_{b}^{a} \\
&= \big[F(a) + G(a)\big]-\big[F(b) + G(b)\big] \\
&= \big[F(a)-F(b)\big] + \big[G(a)-G(b)\big] \\
&= \int_{b}^{a}{f(x)}dx + \int_{b}^{a}{g(x)}dx
\end{align} \)
Example 5
Prove $\displaystyle \displaystyle \int_{b}^{a}{cf(x)}dx = c\int_{b}^{a}{f(x)}dx$.
\( \begin{align} \displaystyle
\int_{b}^{a}{cf(x)}d &= \big[cF(x)\big]_{b}^{a} \\
&= cF(a)-cF(b) \\
&= c\big[F(a)-F(b)\big] \\
&= c \int_{b}^{a}{f(x)}dx
\end{align} \)
Example 6
Prove $\displaystyle \displaystyle \int_{b}^{a}{c}dx = c(a-b)$.
\( \begin{align} \displaystyle
\int_{b}^{a}{c}dx &= \big[cx\big]_{b}^{a} \\
&= c \times a-c \times b \\
&= c(a-b)
\end{align} \)
Example 7
Find $\displaystyle \int_{1}^{2}{8x^3}dx$.
\( \begin{align} \displaystyle
\int_{1}^{2}{8x^3}dx &= \bigg[\dfrac{8x^{3+1}}{3+1}\bigg]_{1}^{2} \\
&= \bigg[\dfrac{8x^{4}}{4}\bigg]_{1}^{2} \\
&= 2\big[x^4\big]_{1}^{2} \\
&= 2\big[2^4-1^4\big] \\
&= 30 \text{ units}^2
\end{align} \)
Example 8
If $\displaystyle \int_{1}^{4}{f(x)}dx=10$ and $\displaystyle \int_{4}^{9}{f(x)}dx=15$, find $\displaystyle \int_{1}^{9}{f(x)}dx$.
\( \begin{align} \displaystyle
\displaystyle \int_{1}^{9}{f(x)}dx &= \displaystyle \int_{1}^{4}{f(x)}dx + \displaystyle \int_{4}^{9}{f(x)}dx \\
&= 10 + 15 \\
&= 25
\end{align} \)
Example 9
If $\displaystyle \int_{-1}^{1}{f(x)}dx=5$, find $\displaystyle \int_{1}^{-1}{f(x)}dx$.
\( \begin{align} \displaystyle
\int_{1}^{-1}{f(x)}dx &= -\int_{-1}^{1}{f(x)}dx \\
&= -5
\end{align} \)
Example 10
If $\displaystyle \int_{-1}^{1}{f(x)}dx=2$, find $\displaystyle \int_{1}^{-1}{(f(x)+5)}dx$.
\( \begin{align} \displaystyle
\int_{1}^{-1}{(f(x)+5)}dx &= \int_{1}^{-1}{f(x)}dx +\int_{1}^{-1}{5}dx \\
&= -2 + 5(-1-1) \\
&= -2 + 5 \times (-2) \\
&= -12
\end{align} \)
Example 11
If $\displaystyle \int_{-1}^{1}{f(x)}dx=5$, find $\displaystyle \int_{-1}^{1}{2f(x)}dx$.
\( \begin{align} \displaystyle
\int_{-1}^{1}{2f(x)}dx &= 2\int_{1}^{-1}{f(x)}dx \\
&= 2 \times 5 \\
&= 10
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Thank you very much for the invitation :). Best wishes.
PS: How are you? I am from France 🙂
Thank you for reaching u!