Definite Integrals

The Fundamental Theorem of Calculus

For a continuous function $f(x)$ with antiderivative $F(x)$, $$\displaystyle \int_{a}^{b}{f(x)}dx = F(b) – F(a)$$

Properties of Definite Integrals

The following properties of definite integrals can all be deductefd from the fundamental theorem of calculus:

  • $\displaystyle \int_{a}^{a}{f(x)}dx = 0$
  • $\displaystyle \int_{b}^{a}{f(x)}dx = -\int_{a}^{b}{f(x)}dx$
  • $\displaystyle \int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx = \int_{c}^{a}{f(x)}dx$
  • $\displaystyle \int_{b}^{a}{\big[f(x) \pm g(x)\big]}dx = \int_{b}^{a}{f(x)}dx \pm \int_{b}^{a}{g(x)}dx$
  • $\displaystyle \int_{b}^{a}{c}dx = c(a-b)$
  • $\displaystyle \int_{b}^{a}{cf(x)}dx = c\int_{b}^{a}{f(x)}dx$

Example 1

Prove $\displaystyle \int_{a}^{a}{f(x)}dx = 0$.

\( \begin{align} \displaystyle
\int_{a}^{a}{f(x)}dx &= \big[F(x)\big]_{a}^{a} \\
&= F(a) – F(a) \\
&= 0
\end{align} \)

Example 2

Prove $\displaystyle \int_{b}^{a}{f(x)}dx = -\int_{a}^{b}{f(x)}dx$.

\( \begin{align} \displaystyle
\int_{b}^{a}{f(x)}dx &= \big[F(x)\big]_{a}^{b} \\
&= F(a) – F(b) \\
&= -\big[F(b) – F(a)\big] \\
&= -\int_{a}^{b}{f(x)}dx
\end{align} \)

Example 3

Prove $\displaystyle \int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx = \int_{c}^{a}{f(x)}dx$.

\( \begin{align} \displaystyle
\int_{b}^{a}{f(x)}dx + \int_{c}^{b}{f(x)}dx &= \big[F(x)\big]_{b}^{a} + \big[F(x)\big]_{c}^{b} \\
&= \big[F(a) – F(b)\big] + \big[F(b) – F(c)\big] \\
&= F(a) – F(c) \\
&= \int_{c}^{a}{f(x)}dx
\end{align} \)

Example 4

Prove $\displaystyle \int_{b}^{a}{\big[f(x) + g(x)\big]}dx = \int_{b}^{a}{f(x)}dx + \int_{b}^{a}{g(x)}dx$.

\( \begin{align} \displaystyle
\int_{b}^{a}{\big[f(x) + g(x)\big]}dx &= \big[F(x) + G(x)\big]_{b}^{a} \\
&= \big[F(a) + G(a)\big] – \big[F(b) + G(b)\big] \\
&= \big[F(a) – F(b)\big] + \big[G(a) – G(b)\big] \\
&= \int_{b}^{a}{f(x)}dx + \int_{b}^{a}{g(x)}dx \\
\end{align} \)

Example 5

Prove $\displaystyle \displaystyle \int_{b}^{a}{cf(x)}dx = c\int_{b}^{a}{f(x)}dx$.

\( \begin{align} \displaystyle
\int_{b}^{a}{cf(x)}d &= \big[cF(x)\big]_{b}^{a} \\
&= cF(a) – cF(b) \\
&= c\big[F(a) – F(b)\big] \\
&= c \int_{b}^{a}{f(x)}dx
\end{align} \)

Example 6

Prove $\displaystyle \displaystyle \int_{b}^{a}{c}dx = c(a-b)$.

\( \begin{align} \displaystyle
\int_{b}^{a}{c}dx &= \big[cx\big]_{b}^{a} \\
&= c \times a – c \times b \\
&= c(a-b) \\
\end{align} \)

Example 7

Find $\displaystyle \int_{1}^{2}{8x^3}dx$.

\( \begin{align} \displaystyle
\int_{1}^{2}{8x^3}dx &= \bigg[\dfrac{8x^{3+1}}{3+1}\bigg]_{1}^{2} \\
&= \bigg[\dfrac{8x^{4}}{4}\bigg]_{1}^{2} \\
&= 2\big[x^4\big]_{1}^{2} \\
&= 2\big[2^4 – 1^4\big] \\
&= 30 \text{ units}^2
\end{align} \)

Example 8

If $\displaystyle \int_{1}^{4}{f(x)}dx=10$ and $\displaystyle \int_{4}^{9}{f(x)}dx=15$, find $\displaystyle \int_{1}^{9}{f(x)}dx$.

\( \begin{align} \displaystyle
\displaystyle \int_{1}^{9}{f(x)}dx &= \displaystyle \int_{1}^{4}{f(x)}dx + \displaystyle \int_{4}^{9}{f(x)}dx \\
&= 10 + 15 \\
&= 25
\end{align} \)

Example 9

If $\displaystyle \int_{-1}^{1}{f(x)}dx=5$, find $\displaystyle \int_{1}^{-1}{f(x)}dx$.

\( \begin{align} \displaystyle
\int_{1}^{-1}{f(x)}dx &= -\int_{-1}^{1}{f(x)}dx \\
&= -5 \\
\end{align} \)

Example 10

If $\displaystyle \int_{-1}^{1}{f(x)}dx=2$, find $\displaystyle \int_{1}^{-1}{(f(x)+5)}dx$.

\( \begin{align} \displaystyle
\int_{1}^{-1}{(f(x)+5)}dx &= \int_{1}^{-1}{f(x)}dx +\int_{1}^{-1}{5}dx \\
&= -2 + 5(-1-1) \\
&= -2 + 5 \times (-2) \\
&= -12\\
\end{align} \)

Example 11

If $\displaystyle \int_{-1}^{1}{f(x)}dx=5$, find $\displaystyle \int_{-1}^{1}{2f(x)}dx$.

\( \begin{align} \displaystyle
\int_{-1}^{1}{2f(x)}dx &= 2\int_{1}^{-1}{f(x)}dx \\
&= 2 \times 5 \\
&= 10
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Comments

  1. Mixsed

    Thank you very much for the invitation :). Best wishes.
    PS: How are you? I am from France 🙂

Your email address will not be published. Required fields are marked *