Composite Functions

A composite function is formed from two functions in the following way.
$$(g \circ f)(x) = g(f(x))$$
If $f(x)=x+3$ and $g(x)=2x$ are two functions, then we combine the two functions to form the composite function:
\( \begin{align}
(g \circ f)(x) &= g(f(x)) \\
&= 2f(x) \\
&= 2(x+3) \\
&= 2x+6
\end{align} \)
That is, $f(x)$ replaces $x$ in the function $g(x)$.
The composite function reads $g$ of $f$ and can be written $g \circ f$.
$$(f \circ g)(x) = f(g(x))$$
Another composite function is:
\( \begin{align}
(f \circ g)(x) &= f(g(x)) \\
&= g(x) + 3 \\
&= 2x+3
\end{align} \)
In this case, $g(x)$ replaces $x$ in $f(x)$. This composite reads $f$ of $g$ and can be written $f \circ g$.
For the composite function $f(g(x))$ to be defined, the range of $g$ must be a subset of (or equal to) the domain of $f$. It is easiest first to list the domain and function of both $f(x)$ and $g(x)$ when dealing with composite function problems.
Example 1
Given $f(x)=2x-1$ and $g(x)=3x+5$, find the simplest expression of $(f \circ g)(x)$.
\( \begin{align} \displaystyle
(f \circ g)(x) &= f(g(x)) \\
&= 2g(x)-1 \\
&= 2(3x+5)-1 \\
&= 6x+10-1 \\
&= 6x+9
\end{align} \)
Example 2
Given $f(x)=4x-5$, find the simplest expression of $(f \circ f)(x)$.
\( \begin{align} \displaystyle
(f \circ f)(x) &= f(f(x)) \\
&= 4f(x)-5 \\
&= 4(4x-5)-5 \\
&= 16x-20-5 \\
&= 16x-25
\end{align} \)
Example 3
Given $f(x)=2x+7$ and $g(x)=-x+2$, find the simplest expression of $(g \circ f)(2)$.
\( \begin{align} \displaystyle
(g \circ f)(2) &= g(f(2)) \\
&= -f(2) + 2 \\
&= -(2 \times 2+7)+2 \\
&= -11 +2 \\
&= -9
\end{align} \)
Example 4
Given $f(x)=\sqrt{x}$ and $g(x)=x+1$, find the domain and range of $(g \circ f)(x)$.
\( \begin{array}{|c|c|c|}
\hline & \textit{Domain} & \textit{Range} \\ \hline
f(x)=\sqrt{x} & x \ge 0 & y \ge 0 \\ \hline
g(x)=x+1 & x \in \mathbb{R} & y \in \mathbb{R} \\ \hline
(g \circ f)(x) & x \ge 0 & y \ge 0 \\ \hline
\end{array} \)
Example 5
Given $f(x)=-2x+3$, $g(x)=5x+k$ and $(g \circ f)(x)=(f \circ g)(x)$, find $k$.
\( \begin{align} \displaystyle
(g \circ f)(x) &= (f \circ g)(x) \\
g(f(x)) &= f(g(x)) \\
5f(x)+k &= -2g(x)+3 \\
5(-2x+3)+k &= -2(5x+k)+3 \\
-10x+15+k &= -10x-2k+3 \\
3k &= 3-15 \\
\therefore k &= -4
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses