# Complicated Exponent Laws (Index Laws)

So far, we have considered situations where one particular exponent’s law was used for simplifying expressions with exponents (indices). However, in most practical situations, more than one law is needed to simplify the expression.

The following example simplifies expressions with exponents (indices) using several exponent laws.

### Example 1

Write $64^{\frac{2}{3}}$ in simplest form.

\begin{align} \displaystyle 64^{\frac{2}{3}} &= (4^3)^{\frac{2}{3}} \\ &= 4^{3 \times \frac{2}{3}} \\ &= 4^2 \\ &= 16 \end{align}

When more than one exponent law (index law) is used to simplify an expression, the following steps can be taken.

$\textit{Step 1}$: If an expression contains brackets, expand them first.
$\textit{Step 2}$: If an expression is a fraction, simplify each numerator and denominator, then divide (simplify across then down).
$\textit{Step 3}$: Express the final answer with positive exponents (indices).

The following examples illustrate the use of exponent laws (index law) for the multiplication and division of fractions.

### Example 2

Simplify $\dfrac{(2x^2y^3)^3 \times 3(xy^4)^2}{6x^4 \times 2xy^4}$.

\begin{align} \displaystyle \dfrac{(2x^2y^3)^3 \times 3(xy^4)^2}{6x^4 \times 2xy^4} &= \dfrac{2^3x^6y^9 \times 3x^2y^8}{(6 \times 2) \times x^{4+1}y^4} \\ &= \dfrac{(8 \times 3) \times x^{6+2} \times y^{9+8}}{12x^5y^4} \\ &= \dfrac{24x^8y^{17}}{12x^5y^4} \\ &= \dfrac{24}{12} \times x^{8-5} \times y^{17-4} \\ &= 2x^3y^{13} \end{align}

### Example 3

Simplify $a^{-2}b^4 \times (a^3b^{-4})^{-1}$, leaving your answer with positive exponents.

\begin{align} \displaystyle a^{-2}b^4 \times (a^3b^{-4})^{-1} &= a^{-2}b^4 \times a^{-3}b^4 \\ &= a^{-2-3}b^{4+4} \\ &= a^{-5}b^8 \\ &= \dfrac{b^8}{a^5} \end{align}

### Example 4

Simplify $\Bigg(\dfrac{a^{-\frac{1}{2}}b^{-1}}{3^{-1}b^2}\Bigg)^{-1} \div \Bigg(\dfrac{3a^{-\frac{3}{2}}b^2}{a^{\frac{3}{4}}b^{\frac{1}{2}}}\Bigg)^2$, leaving your answer with positive exponents.

\begin{align} \displaystyle \Bigg(\dfrac{a^{-\frac{1}{2}}b^{-1}}{3^{-1}b^2}\Bigg)^{-1} \div \Bigg(\dfrac{3a^{-\frac{3}{2}}b^2}{a^{\frac{3}{4}}b^{\frac{1}{2}}}\Bigg)^2 &= \dfrac{a^{\frac{1}{2}}b}{3b^{-2}} \div \dfrac{3^2a^{-3}b^4}{a^{\frac{3}{2}}b} \\ &= \dfrac{a^{\frac{1}{2}}b}{3b^{-2}} \times \dfrac{a^{\frac{3}{2}}b}{3^2a^{-3}b^4} \\ &= \dfrac{a^2b^2}{27a^{-3}b^2} \\ &= \dfrac{a^5}{27} \end{align}

### Example 5

Simplify $\dfrac{3^n \times 6^{n+1} \times 12^{n-1}}{3^{2n} \times 8^n}$.

\begin{align} \displaystyle \dfrac{3^n \times 6^{n+1} \times 12^{n-1}}{3^{2n} \times 8^n} &= \dfrac{3^n \times (3 \times 2)^{n+1} \times (2^2 \times 3)^{n-1}}{3^{2n} \times 2^{3n}} \\ &= \dfrac{3^n \times 3^{n+1} \times 2^{n+1} \times 2^{2n-2} \times 3^{n-1}}{3^{2n} \times 2^{3n}} \\ &= \dfrac{3^{3n} \times 2^{3n-1}}{3^{2n} \times 2^{3n}} \\ &= 3^n \times 2^{-1} \\ &= \dfrac{3^n}{2} \end{align}

âœ“ Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…