Complex Numbers with Vector Addition are obtained using the sides of triangles; the sum of sides of two sides of a triangle is greater than the other side.
Worked on Examples of Complex Numbers with Vector Addition
Suppose \( \displaystyle 0 \lt \alpha, \ \beta \lt \frac{\pi}{2} \) and define complex numbers \(z_n\) by
$$z_n = \cos(\alpha + n \beta) + i \sin(\alpha + n \beta)$$
for \(n = 0, \ 1, \ 2, \ 3, \ 4\). the points \(P_0, \ P_1, \ P_2\) and \( P_3\) are the points in the Argand diagram that correspond to the complex numbers \(z_0, \ z_0+z_1, \ z_0+z_1+z_2 \) and \( z_0+z_1+z_2+z_3\) respectively. The angles \( \theta_0, \ \theta_1\) and \( \theta_2\) are the external angles at \(P_0, \ P_1\) and \(P_2\).
(a) Using vector addition, explain why \(\theta_0 = \theta_1 = \theta_2 = \beta \).
\(\begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
z_0 &= \cos(\alpha) + i \sin(\alpha) \color{red} \cdots (0) \\
z_1 &= \cos(\alpha + \beta) + i \sin(\alpha + \beta) \color{red} \cdots (1) \\
z_2 &= \cos(\alpha + 2 \beta) + i \sin(\alpha + 2 \beta) \color{red} \cdots (2) \\
z_3 &= \cos(\alpha + 3 \beta) + i \sin(\alpha + 3 \beta) \color{red} \cdots (3) \\
z_4 &= \cos(\alpha + 4 \beta) + i \sin(\alpha + 4 \beta) \color{red} \cdots (4) \\
\overrightarrow{z_0} &= \overrightarrow{OP_0} \\
\angle P_0 O x &= \alpha &\color{red} \text{by } (0) \\
\overrightarrow{OP_1} &= \overrightarrow{OP_0} + \overrightarrow{P_0 P_1} \\
\overrightarrow{z_0 + z_1} &= \overrightarrow{z_0} + \overrightarrow{z_1} \\
\overrightarrow{z_0 + z_1} &= \overrightarrow{OP_0} + \overrightarrow{P_0 P_1} \\
\overrightarrow{z_1} &= \overrightarrow{P_0 P_1} \\
z_0 &= \cos(\alpha + \theta_0) + i \sin(\alpha + \theta_0) \\
\theta_0 &= \beta &\color{red} \text{by } (1) \\
z_1 &= \cos(\alpha + \theta_0 + \theta_1) + i \sin(\alpha + \theta_0 + \theta_1) \\
&= \cos(\alpha + \beta + \theta_1) + i \sin(\alpha + \beta + \theta_1) \\
\theta_1 &= \beta &\color{red} \text{by } (2) \\
z_2 &= \cos(\alpha + \theta_0 + \theta_1 + \theta_2) + i \sin(\alpha + \theta_0 + \theta_1 + \theta_2) \\
&= \cos(\alpha + \beta + \beta + \theta_2) + i \sin(\alpha + \beta + \beta + \theta_2) \\
\theta_2 &= \beta &\color{red} \text{by } (3) \\
\therefore \theta_0 &= \theta_1 = \theta_2 = \beta \\
\end{aligned} \\ \)
(b) Show that \( \angle P_0O P_1 = \angle P_0 P_2 P_1 \).
\(\begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\angle O P_0 P_1 &= \angle P_0 P_1 P_2 \color{red} \cdots (5) &\color{red} \theta_0 = \theta_1 = \beta \\
OP_0 &= P_0 P_1 = P_1 P_2 = 1 \color{red} \cdots (6) \\
\triangle O P_0 P_1 &\equiv \triangle P_0 P_1 P_2 &\color{red} \text{by } (5), (6) \\
\therefore \angle P_0O P_1 &= \angle P_0 P_2 P_1 &\color{red} \text{corresponding angles are equal}
\end{aligned} \)
(c) Explain why \( O P_0 P_1 P_2 \) is a cyclic quadrilateral.
\(\begin{aligned} \displaystyle\require{AMSsymbols} \require{color}
\angle P_0O P_1 &= \angle P_0 P_2 P_1 &\color{red} \text{by } (b) \\
\therefore O P_0 P_1 P_2 &\text{ is a cyclic quadrilateral} &\color{red} \text{angles subtended by a chord}
\end{aligned} \)
(d) Show that \( P_0 P_1 P_2 P_3\) is a cyclic quadrilateral.
\(\begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\angle P_0 P_1 P_2 &= \angle P_1 P_2 P_3 \color{red} \cdots (7) &\color{red} \theta_1 = \theta_2 = \beta \\
P_0 P_1 &= P_1 P_2 = P_2 P_3 = 1 \color{red} \cdots (8) \\
\triangle P_0 P_1 P_2 &\equiv \triangle P_1 P_2 P_3 &\color{red} \text{by } (7), (8) \\
\angle P_1 P_0 P_2 &= \angle P_2 P_3 P_1 &\color{red} \text{corresponding angles are equal} \\
\therefore P_0 P_1 P_2 P_3 &\text{ is a cyclic quadrilateral} &\color{red} \text{angles subtended by a chord}
\end{aligned} \)
(e) Explain why \( O P_0 P_1 P_2 P_3\) are concyclic.
\(\begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
O P_0 P_1 P_2 &\text{ are concyclic } \color{red} \cdots (9) \\
P_0 P_1 P_2 P_3 &\text{ are concyclic } \color{red} \cdots (10) \\
\therefore O P_0 P_1 P_2 P_3 &\text{ are concyclic } &\color{red} \text{by } (9), (10)
\end{aligned} \)
(f) Find the value of \( \beta \) if \( z_0 + z_1 + z_2 +z_3 + z_4 = 0 \).
\(\begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\overrightarrow{OP_4} &= \overrightarrow{z_0 + z_1 + z_2 +z_3 + z_4} \\
\overrightarrow{OP_4} &= 0 \\
\text{Thus } &P_4 \text{ is at } O. \\
P_0 P_1 P_2 P_3 P_4 &\text{ are concyclic}. \\
P_0 P_1 P_2 P_3 P_4 &\text{ is a regular pentagon}. &\color{red} \text{equal exterior angles and equal sides} \\
\theta_0 &= \theta_1 = \theta_2 = \theta_3 = \theta_4 = \beta &\color{red} \text{exterior angles} \\
\therefore \beta &= \frac{2 \pi}{5} &\color{red} \text{sum of exterior angles is } 2 \pi
\end{aligned} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume