Logarithm Change of Base Rule

Logarithm Change of Base Rule

$$\log_{b}{a} = \dfrac{\log_{c}{a}}{\log_{c}{b}}$$ $$\text{for }a,b,c>0 \text{ and } b,c \ne 1$$ For example, \( \begin{align} \log_{3}{8} &= \dfrac{\log_{2}{8}}{\log_{2}{3}} \\ &= \dfrac{\log_{5}{8}}{\log_{5}{3}} \\ &= \dfrac{\log_{10}{8}}{\log_{10}{3}} \\ &\vdots \\ &= 1.8927 \cdots \\ \end{align} \) $\textit{Proof:}$ \( \begin{align} \displaystyle \text{Let } \log_{b}{a} &= x \cdots (1)\\ b^x &= a \\ \log_{c}{b^x} &= \log_{c}{a} &\text{taking logarithm in base [...]
Exponential Inequalities using Logarithms

Exponential Inequalities using Logarithms

Inequalities are worked in exactly the same way except that there is a change of sign when dividing or multiplying both sides of the inequality by a negative number. \begin{array}{|c|c|c|} \hline \log_{2}{3}=1.6>0 & \log_{5}{3}=0.7>0 & \log_{10}{3}=0.5>0 \\ \hline \log_{2}{2}=1>0 & \log_{5}{2}=0.4>0 & \log_{10}{2}=0.3>0 \\ \hline \log_{2}{1}=0 & \log_{5}{1}=0 & \log_{10}{1}=0 \\ \hline \log_{2}{0.5}=-1 \log_{10}{9} \\ [...]
Natural Logarithms

Natural Logarithms

After $\pi$, the next weird number is called $e$, for $\textit{exponential}$. It was first discussed by Jacob Bernoulli in 1683. It occurs in problems about compound interest, leds to logarithms, and tells us how variables like radioactivity, temperature, or the human population increase or decrease. In 1614 John Napier knew, from personal experience, that many [...]
Logarithmic Laws

Logarithmic Laws

$$ \log_{a}{(xy)} = \log_{a}{x} + \log_{a}{y} $$ $\textit{Proof}$ Let $A=\log_{a}{x}$ and $B=\log_{a}{y}$. Then $a^A = x$ and $a^B=y$. \( \begin{align} a^A \times a^B&= xy \\ a^{A+B} &= xy \\ A+B &= \log_{a}{(xy)} \\ \therefore \log_{a}{x}+\log_{a}{y} &= \log_{a}{(xy)} \\ \end{align} \) $$\log_{a}{\dfrac{x}{y}} = \log_{a}{x} - \log_{a}{y} $$ $\textit{Proof}$ Let $A=\log_{a}{x}$ and $B=\log_{a}{y}$. Then $a^A = x$ [...]