# Exponential Growth and Decay using Logarithms

It has been known that how exponential functions can be used to model a variety of growth and decay situations. These included the growth of populations and the decay of radioactive substances. In this lesson we consider more growth and decay problems, focusing particularly on how logarithms can be used in there solution. Population Growth [...]

# Graphing Natural Logarithmic Functions

The inverse function of $y=e^x$ is $y=\log_{e}{x}$. Therefore $y=\log_{e}{x}$ is an inverse function, it is a reflection of $y=e^x$ in the line $y=x$. The graphs of $y=e^x$ is $y=\log_{e}{x}$: \begin{array}{|c|c|c|} \require{color} \hline & y=e^x & \color{red}y =\log_{e}{x} \\ \hline \text{domain} & x \in \mathbb{R} & \color{red}x \gt 0 \\ \hline \text{range} & y \gt 0 [...]

# Graphing Logarithmic Functions

The inverse function of $y=a^x$ is $y=\log_{a}{x}$. Therefore $y=\log_{a}{x}$ is an inverse function, it is a reflection of $y=a^x$ in the line $y=x$. The graphs of $y=a^x$ is $y=\log_{a}{x}$ for $0 \lt a \lt 1$: The graphs of $y=a^x$ is $y=\log_{a}{x}$ for $a \gt 1$: \begin{array}{|c|c|c|} \require{color} \hline & y=a^x & \color{red}y =\log_{a}{x} \\ \hline [...]