# Calculation of Areas under Curves

Consider the function $f(x)=x^2+2$.
We wish to estimate the green area enclosed by $y=f(x)$, the $x$-axis, and the vertical lines $x=1$ and $x=4$. Suppose we divide the $x$-interval into three strips of width $1$ unit.

## Upper Rectangles

The diagram below shows upper rectangles, which are rectangles with top edges at the maximum value of the curve on that interval.

The area of the upper rectangles,
\begin{align} \displaystyle A_{upper} &= 1 \cdot f(2) + 1 \cdot f(3) + 1 \cdot f(4) \\ &= 1 \cdot 6 + 1 \cdot 11 + 1 \cdot 18 \\ &= 6 + 11 + 18 \\ &= 35 \end{align}

### Example 1

Find $A_{upper}$ enclosed by $f(x)=x^3$, the $x$-axis and the the vertical lines $x=1$ and $x=5$, using $4$ subintervals.

$$\begin{array}{|c|c|c|c|c|}\hline x & 2 & 3 & 4 & 5 \\ \hline f(x) & 8 & 27 & 64 & 125 \\ \hline \end{array}$$
\begin{align} \displaystyle A_{upper} &= 1 \cdot f(2) + 1 \cdot f(3) + 1 \cdot f(4) + 1 \cdot f(5) \\ &= 1 \cdot 8 + 1 \cdot 27 + 1 \cdot 64 + 1 \cdot 125 \\ &= 224 \end{align}

## Lower Rectangles

The next diagram below shows lower rectangles, which are rectangles with top edges at the minimum value of the curve on that interval.

The area of the lower rectangles,
\begin{align} \displaystyle A_{lower} &= 1 \cdot f(1) + 1 \cdot f(2) + 1 \cdot f(3) \\ &= 1 \cdot 3 + 1 \cdot 6 + 1 \cdot 11 \\ &= 3 + 6 + 11 \\ &= 20 \end{align}
It shows clearly $A_{lower} \lt Area \lt A_{upper}$, so the required area lies between $20$ and $35$.

### Example 2

Find $A_{lower}$ enclosed by $f(x)=x^3$, the $x$-axis and the the vertical lines $x=1$ and $x=5$, using $4$ subintervals.

$$\begin{array}{|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline f(x) & 1 & 8 & 27 & 64 \\ \hline \end{array}$$
\begin{align} \displaystyle A_{lower} &= 1 \cdot f(1) + 1 \cdot f(2) + 1 \cdot f(3) + 1 \cdot f(4) \\ &= 1 \cdot 1 + 1 \cdot 8 + 1 \cdot 27 + 1 \cdot 64 \\ &= 100 \end{align} If the interval $1 \le x \le 4$ is divided into $6$ equal subintervals, each of length $0.5$, then
\begin{align} \displaystyle A_{upper} &= 0.5 f(1.5) + 0.5 f(2) + 0.5 f(2.5) + 0.5 f(3) + 0.5 f(3.5) + 0.5 f(4) \\ &= 0.5 \cdot 4.25 + 0.5 \cdot 6 + 0.5 \cdot 8.25 + 0.5 \cdot 11 + 0.5 \cdot 14.25 + 0.5 \cdot 18 \\ &= 2.125 + 3 + 4.125 + 5.5 + 7.125 + 9 \\ &= 30.875 \\ A_{lower} &= 0.5 f(1) + 0.5 f(1.5) + 0.5 f(2) + 0.5 f(2.5) + 0.5 f(3) + 0.5 f(3.5) \\ &= 0.5 \cot 3 + 0.5 \cdot 4.25 + 0.5 \cdot 6 + 0.5 \cdot 8.25 + 0.5 \cdot 11 + 0.5 \cdot 14.25 \\ &= 1.5 + 2.125 + 3 + 4.125 + 5.5 + 7.125 \\ &= 23.375 \end{align}

From this refinement, we conclude that the required area lies between $23.375$ and $30.875$.
As we divide into more rectangles, the estimates $A_{lower}$ and $A_{upper}$ become more accurate. As the subdivision width is further reduced, both $A_{lower}$ and $A_{upper}$ will converge to the actual area.

### Example 3

Find $A_{upper}$ enclosed by $f(x)=x^3$, the $x$-axis and the the vertical lines $x=1$ and $x=5$, using 8 subintervals.

$$\begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 \\ \hline f(x) & 1 & 3.375 & 8 & 15.625 & 27 & 42.875 & 64 & 91.125 & 125 \\ \hline \end{array}$$
\begin{align} \displaystyle A_{upper} &= 0.5 f(1.5) + 0.5 f(2) + 0.5 f(2.5) + 0.5 f(3) + 0.5 f(3.5) + 0.5 f(4) + 0.5 f(4.5) + 0.5 f(5) \\ &= 0.5 \cdot 3.375 + 0.5 \cdot 8 + 0.5 \cdot 15.625 + 0.5 \cdot 27 + 0.5 \cdot 42.875 + 0.5 \cdot 64 + 0.5 \cdot 91.125 + 0.5 \cdot 125 \\ &= 188.5 \end{align}

### Example 4

Find $A_{lower}$ enclosed by $f(x)=x^3$, the $x$-axis and the the vertical lines $x=1$ and $x=5$, using 8 subintervals.

$$\begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 \\ \hline f(x) & 1 & 3.375 & 8 & 15.625 & 27 & 42.875 & 64 & 91.125 & 125 \\ \hline \end{array}$$
\begin{align} \displaystyle A_{lower} &= 0.5 f(1) + 0.5 f(1.5) + 0.5 f(2) + 0.5 f(2.5) + 0.5 f(3) + 0.5 f(3.5) + 0.5 f(4) + 0.5 f(4.5) \\ &= 0.5 \cdot 1 + 0.5 \cdot 3.375 + 0.5 \cdot 8 + 0.5 \cdot 15.625 + 0.5 \cdot 27 + 0.5 \cdot 42.875 + 0.5 \cdot 64 + 0.5 \cdot 91.125 \\ &= 126.5 \end{align}

## The Definite Integral

Consider the lower and upper rectangle sums for a function that is positive and increasing on the interval $[a,b]$.
The interval $[a,b]$ is now deivided into $n$ subdivisions of width $\delta x= \dfrac{b-a}{n}$.
Note that there are $n+1$ coordinates in $n$ subintervals.
$$x_0,x_1,x_2,\cdots,x_{n-1},x_n$$
Since the function is increasing,
\begin{align} \displaystyle A_{lower} &= \delta x f(x_0) + \delta x f(x_1) + \delta x f(x_2) + \cdots + \delta x f(x_{n-2}) + \delta x f(x_{n-1}) \\ &= \sum^{n-1}_{i=0}\delta f(x_i) \\ A_{upper} &= \delta x f(x_1) + \delta x f(x_2) + \delta x f(x_3) + \cdots + \delta x f(x_{n-1}) + \delta x f(x_{n}) \\ &= \sum^{n}_{i=1}\delta x f(x_i) \\ A_{upper} – A_{lower} &= \delta x \big[f(x_n) – f(x_0)\big] \\ &= \dfrac{b-a}{n}\big[f(b) – f(a)\big] \\ \lim_{n \rightarrow \infty} (A_{upper} – A_{lower}) &= \lim_{n \rightarrow \infty} \dfrac{b-a}{n}\big[f(b) – f(a)\big] \\ &= 0 \\ \lim_{n \rightarrow \infty} A_{lower} &= \lim_{n \rightarrow \infty} A_{upper} \\ A_{lower} &\lt A \lt A_{upper} \\ \therefore \lim_{n \rightarrow \infty} A_{lower} &= A = \lim_{n \rightarrow \infty} A_{upper} \end{align}

Discover more enlightening videos by visiting our YouTube channel!

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…