Calculating Chi-Squared

Calculating Chi-Squared

\( 2 \times 2 \) Contingency Table

The following shows the results of a survey of a sample of \( 200 \) randomly chosen adults classified according to gender and sport. These are called observed values or observed frequencies.
$$ \begin{array}{|c|c|c|c|} \hline
& \text{loves sport} & \text{hates sport} & \text{sum} \\ \hline
\text{male} & 72 & 48 & 120 \\ \hline
\text{female} & 18 & 62 & 80 \\ \hline
\text{sum} & 90 & 110 & 200 \\ \hline
\end{array} $$

Expected Frequency Table

$$ \begin{array}{|c|c|c|c|} \hline
& \text{loves sport} & \text{hates sport} & \text{sum} \\ \hline
\text{male} & \dfrac{120 \times 90}{200} = 54 & \dfrac{120 \times 110}{200} = 66 & 120 \\ \hline
\text{female} & \dfrac{80 \times 90}{200} = 36 & \dfrac{80 \times 110}{200} = 44 & 80 \\ \hline
\text{sum} & 90 & 110 & 200 \\ \hline
\end{array} $$

Calculating \( \chi^{2} \)

$$ \chi^{2} = \sum \dfrac{(f_o – f_e)^2}{f_e} $$

\( f_o \) is an observed frequency
\( f_e \) is an expected frequency

$$ \begin{array}{|c|c|r|c|c|} \hline
f_o & f_e & f_o – f_e & (f_o – f_e)^2 & \dfrac{(f_o – f_e)^2}{f_e} \\ \hline
72 & 54 & 18 & 324 & 6.0 \\ \hline
48 & 66 & -18 & 324 & 4.9 \\ \hline
18 & 36 & -18 & 324 & 9.0 \\ \hline
62 & 44 & 18 & 324 & 7.4 \\ \hline
&&& \text{sum} & 27.3 \\ \hline
\end{array} \\
\therefore \chi^2 = 27.3
$$

\( 2 \times 3 \) Contingency Table

The following shows the results of a survey of a sample of \( 500 \) randomly chosen adults classified according to gender and political preferences. These are called observed values or observed frequencies.
$$ \begin{array}{|c|c|c|c|c|} \hline
& \text{Liberal} & \text{neutral} & \text{Democrates} & \text{sum} \\ \hline
\text{male} & 120 & 40 & 90 & 260 \\ \hline
\text{female} & 105 & 50 & 95 & 240 \\ \hline
\text{sum} & 225 & 90 & 185 & 500 \\ \hline
\end{array} $$

Expected Frequency Table

$$ \begin{array}{|r|r|r|r|r|} \hline
& \text{Liberal} & \text{neutral} & \text{Democrats} & \text{sum} \\ \hline
\text{male} & \dfrac{260 \times 225}{500} = 117 & \dfrac{260 \times 90}{500} = 46.8 & \dfrac{260 \times 185}{500} = 96.2 & 260 \\ \hline
\text{female} & \dfrac{240 \times 225}{500} = 108 & \dfrac{240 \times 90}{500} = 43.2 & \dfrac{240 \times 185}{500} = 88.8 & 240 \\ \hline
\text{sum} & 225 & 90 & 185 & 500 \\ \hline
\end{array} $$

Calculating \( \chi^{2} \)

$$ \chi^{2} = \sum \dfrac{(f_o – f_e)^2}{f_e} $$

\( f_o \) is an observed frequency
\( f_e \) is an expected frequency

$$ \begin{array}{|r|r|r|r|r|} \hline
f_o & f_e & f_o – f_e & (f_o – f_e)^2 & \dfrac{(f_o – f_e)^2}{f_e} \\ \hline
120 & 117.0 & 3.0 & 9.00 & 0.0769 \\ \hline
40 & 46.8 & -6.8 & 46.24 & 0.9880 \\ \hline
100 & 96.2 & 3.8 & 14.44 & 0.1501 \\ \hline
105 & 108.0 & -3.0 & 9.00 & 0.0833 \\ \hline
50 & 43.2 & 6.8 & 46.24 & 1.0704 \\ \hline
85 & 88.8 & -3.8 & 14.44 & 0.1626 \\ \hline
&&& \text{sum} & 2.5314 \\ \hline
\end{array} \\
\therefore \chi^2 = 2.5314
$$


 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *