Basic Integration Rules

Basic Integration Rules

Antiderivatives

In many cases in calculus, it is known that the rate of change of one variable with respect to another, but we do not have a formula that relates the variables. In other words, it is known that $\dfrac{dy}{dx}$, but we need to know $y$ in terms of $x$.
The process of finding $y$ from $\dfrac{dy}{dx}$, or $f(x)$ from $f'(x)$, is the reverse process of differentiation. We call it antidifferentiation or integration.
$$ y\xrightarrow{\text{differentiation}} \dfrac{dy}{dx} \\
y\xleftarrow[\text{or integration}]{\text{antidifferentiation}} \dfrac{dy}{dx} \\
f(x)\xrightarrow{\text{differentiation}} f'(x) \\
f(x)\xleftarrow[\text{or integration}]{\text{antidifferentiation}} f'(x)$$
Consider $\dfrac{dy}{dx}=x^3$.
From our work on differentiation, we know that when we differentiate power functions, the index reduces by $1$. We hence know that $y$ must involve $x^4$.
If $y=x^4$ then $\dfrac{dy}{dx}=4x^3$, so if we start with $y=\dfrac{1}{4}x^4$ then $\dfrac{dy}{dx}=x^4$.
However, in all of the cases $y=\dfrac{1}{4}x^4+1$, $y=\dfrac{1}{4}x^4+-2$, $y=\dfrac{1}{4}x^4+100$ and $y=\dfrac{1}{4}x^4+12$ we find $\dfrac{dy}{dx}=x^3$.
There are infinitely many functions of the form $y=\dfrac{1}{4}x^4+c$ where $c$ is an arbitrary constant that will give $\dfrac{dy}{dx}=x^3$.
Ignoring the arbitrary constant, we say that $\dfrac{1}{4}x^4$ is the antiderivative of $x^3$. It is the simplest function that, when differentiated, gives $x^2$.

Example 1

Find the antiderivative of $x^5$.

\( \begin{align} \displaystyle
\dfrac{d}{dx}x^6 &= 6x^5 \\
\dfrac{d}{dx}\dfrac{1}{6}x^6 &= x^5
\end{align} \)
Therefore the antiderivative of $x^5$ is $\dfrac{1}{6}x^6$.

Example 2

Find the antiderivative of $\sqrt{x}$.

\( \begin{align} \displaystyle
\sqrt{x} &= x^{\frac{1}{2}} \\
\dfrac{d}{dx}x^{\frac{3}{2}} &= \dfrac{3}{2}x^{\frac{1}{2}} \\
\dfrac{d}{dx}\dfrac{2}{3}x^{\frac{3}{2}} &= x^{\frac{1}{2}} \\
\dfrac{d}{dx}\dfrac{2}{3}\sqrt{x^3} &= \sqrt{x}
\end{align} \)
Therefore the antiderivative of $\sqrt{x}$ is $\dfrac{2}{3}\sqrt{x^3}$.

Example 3

Find the antiderivative of $(2x+1)^3$.

\( \begin{align} \displaystyle
\dfrac{d}{dx}(2x+1)^4 &= 4(2x+1)^3 \times \dfrac{d}{dx}(2x+1) \\
&= 4(2x+1)^3 \times 2 \\
&= 8(2x+1)^3 \\
\dfrac{d}{dx}\dfrac{1}{8}(2x+1)^4 &= (2x+1)^3
\end{align} \)
Therefore the antiderivative of $(2x+1)^3$ is $\dfrac{1}{8}(2x+1)^4$.

Integration

\( \begin{align} \displaystyle
x^3 &= \dfrac{d}{dx}\Big(\dfrac{1}{4}x^4\Big) \\
x^3 &= \dfrac{d}{dx}\Big(\dfrac{1}{4}x^4 +1\Big) \\
x^3 &= \dfrac{d}{dx}\Big(\dfrac{1}{4}x^4 +10\Big) \\
x^3 &= \dfrac{d}{dx}\Big(\dfrac{1}{4}x^4 -7\Big) \\
\therefore \int{x^3}dx &= \dfrac{1}{4}x^4+c
\end{align} \)

Example 4

If $y=x^4+3x^3$, find $\dfrac{dy}{dx}$. Hence find $\displaystyle \int{(4x^3+9x^2)}dx$.

\( \begin{align} \displaystyle
\dfrac{d}{dx}(x^4+3x^3) &= 4x^3+9x^2 \\
\therefore \int{(4x^3+9x^2)}dx &= x^4+3x^3+c
\end{align} \)

Rules for Integration

$$ \large \displaystyle \int{x^n}dx = \dfrac{1}{n+1}x^{n+1}+c$$

Example 5

Find $\displaystyle \int{x^6}dx$.

\( \begin{align} \displaystyle
\int{x^6}dx &= \dfrac{1}{6+1}x^{6+1} +c \\
&= \dfrac{1}{7}x^{7} +c
\end{align} \)

Example 6

Find $\displaystyle \int{\sqrt{x}}dx$.

\( \begin{align} \displaystyle
\int{\sqrt{x}}dx &= \int{x^{\frac{1}{2}}}dx \\
&= \dfrac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1} + c \\
&= \dfrac{1}{\frac{3}{2}}x^{\frac{3}{2}} + c \\
&= \dfrac{2}{3}\sqrt{x^3} + c
\end{align} \)

Example 7

Find $\displaystyle \int{5}dx$.

\( \begin{align} \displaystyle
\int{\sqrt{5}}dx &= \int{5 \times 1}dx \\
&= \int{5 \times x^0}dx \\
&= 5 \times \dfrac{1}{0+1}x^{0+1} + c \\
&= 5 \times x + c \\
&= 5x + c
\end{align} \)

Example 8

Find $\displaystyle \int{(3x^3 + 4x^4)}dx$.

\( \begin{align} \displaystyle
\int{(3x^3 + 4x^4)}dx &= \dfrac{3}{3+1}x^{3+1} + \dfrac{4}{4+1}x^{4+1} +c \\
&= \dfrac{3}{4}x^{4} + \dfrac{4}{5}x^{5} +c
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *