# Basic Differentiation Rules

Differentiation is the process of finding a derivative or gradient function.
Given a function $f(x)$, we obtain $f'(x)$ by differentiating with respect to the variable $x$.
There are some rules associated with differentiation. These rules can be used to differentiate more complicated functions without having to resort to the sometimes lengthy method of first principles.
Note that the notations, $\dfrac{d}{dx}f(x)$ and $f^{\prime}(x)$ are the same expressions for the derivatives.

## Differentiating a constant

$f(x) = c$ then $f^{\prime}(x) = 0$

### Example 1

If $f(x)=5$, find $f'(x)$.

\begin{align} \displaystyle f^{\prime}(x) &= 5^{\prime} \\ &= 0 \end{align}

## Differentiating $x^n$

$f(x) = x^n$ then $f'(x) = nx^{n-1}$

### Example 2

If $f(x)=x^7$, find $f^{\prime}(x)$.

\begin{align} \displaystyle f^{\prime}(x) &= (x^7)^{\prime} \\ &= 7x^{7-1} \\ &= 7x^6 \end{align}

## Constant times a function

$f(x) = cu(x)$ then $f'(x) = cu^{\prime}(x)$
Proof,
\begin{align} \displaystyle f^{\prime}(x) &= \lim_{h \rightarrow 0} \dfrac{f(x+h)-f(x)}{h} \\ &= \lim_{h \rightarrow 0} \dfrac{cu(x+h)-cu(x)}{h} \\ &= \lim_{h \rightarrow 0} c \times \dfrac{u(x+h)-u(x)}{h} \\ &= c \lim_{h \rightarrow 0} \dfrac{u(x+h)-u(x)}{h} \\ &= cu'(x) \end{align}

### Example 3

If $f(x)=3x^5$, find $f'(x)$.

\begin{align} \displaystyle f^{\prime}(x) &= (3x^5)^{\prime} \\ &= 3(x^5)^{\prime} \\ &= 3 \times 5x^4 \\ &= 15x^4 \end{align}

$f(x) = u(x) + v(x)$ then $f'(x) = u'(x) + v'(x)$
Proof,
\begin{align} \displaystyle f^{\prime}(x) &= \lim_{h \rightarrow 0} \dfrac{f(x+h)-f(x)}{h} \\ &= \lim_{h \rightarrow 0} \dfrac{u(x+h)+v(x+h) – (u(x)+v(x))}{h} \\ &= \lim_{h \rightarrow 0} \Bigg[\dfrac{u(x+h)-u(x)}{h} + \dfrac{v(x+h)-v(x)}{h}\Bigg] \\ &= \lim_{h \rightarrow 0} \dfrac{u(x+h)-u(x)}{h} + \lim_{h \rightarrow 0}\dfrac{v(x+h)-v(x)}{h} \\ &= u^{\prime}(x) + v^{\prime}(x) \end{align}

### Example 4

If $f(x)=x^4+x^6$, find $f'(x)$.

\begin{align} \displaystyle f^{\prime}(x) &= (x^4+x^6)^{\prime} \\ &= (x^4)’+(x^6)’ \\ &= 4x^{4-1}+6x^{6-1} \\ &= 4x^3+6x^5 \end{align}

### Example 5

If $f(x)=\sqrt{x}$, find $f'(x)$.

\begin{align} \displaystyle f(x) &= x^{\frac{1}{2}} \\ f^{\prime}(x) &= \dfrac{1}{2}x^{\frac{1}{2}-1} \\ &= \dfrac{1}{2}x^{-\frac{1}{2}} \\ &= \dfrac{1}{2\sqrt{x}} \end{align}

### Example 6

If $f(x)=\dfrac{1}{x^2}$, find $f'(x)$.

\begin{align} \displaystyle f(x) &= x^{-2} \\ f^{\prime}(x) &= -2x^{-2-1} \\ &= -2x^{-3} \\ &= -\dfrac{2}{x^3} \end{align}

### Example 7

If $f(x)=\dfrac{1}{\sqrt{x}}$, find $f'(x)$.

\begin{align} \displaystyle f(x) &= x^{-\frac{1}{2}} \\ f^{\prime}(x) &= -\dfrac{1}{2}x^{-\frac{1}{2}-1} \\ &= -\dfrac{1}{2}x^{-\frac{3}{2}} \\ &= -\dfrac{1}{2\sqrt{x^3}} \end{align}

### Example 8

If $f(x)=x\sqrt{x}$, find $f'(x)$.

\begin{align} \displaystyle f(x) &= x^{\frac{3}{2}} \\ f^{\prime}(x) &= \dfrac{3}{2}x^{\frac{3}{2}-1} \\ &= \dfrac{3}{2}x^{\frac{1}{2}} \\ &= \dfrac{3}{2}\sqrt{x} \end{align}

### Example 9

If $f(x)=\dfrac{2x-1}{x}$, find $f'(x)$.

\begin{align} \displaystyle f(x) &= 2-\dfrac{1}{x} \\ &= 2-x^{-1} \\ f^{\prime}(x) &= x^{-1-1} \\ &= x^{-2} \\ &= \dfrac{1}{x^2} \end{align}

Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## Simplified Calculus: Exploring Differentiation by First Principles

Exploring differentiation by first principles Suppose we are given a function $f(x)$ and asked to find its derivative at the point where $x=a$. This is…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…