AREA of the Shapes Formula Explained with Clear Examples and 9 Comprehensive Video Lessons

What is the Area of the Shapes?

A shape is defined as a figure surrounded by a closed boundary in geometry. The closed boundary consists of lines, curves and points. The amount of space inside the boundary that expresses the extent of a two-dimensional shape is defined as an area. The area is measured in square units, such as m2, cm2, mm2, km2 or ha.

The area of the shapes includes:

• rectangles
• squares
• triangles
• parallelograms
• rhombus
• kites
• trapezia, plural of trapezium
• circles
• composite shapes

How to Handle Metric Units of Area?

Conversion between $\text{m}^2$ and $\text{cm}^2$

\begin{align} \text{1 m}^2 &= \text{100 cm} \times \text{100 cm} = \text{10 000 cm}^2 \\ \text{2 m}^2 &= 2 \times \text{10 000 cm}^2 = \text{20 000 cm}^2 \\ \text{500 cm}^2 &= 500 \div \text{10 000 m}^2 = \text{0.05 m}^2 \end{align}

Conversion between $\text{m}^2$ and $\text{km}^2$

\begin{align} \text{1 km}^2 &= \text{1000 m} \times \text{1000 m} = \text{1000 000 m}^2 \\ \text{3 km}^2 &= 3 \times \text{1000 000 m}^2 = \text{3000 000 m}^2 \\ \text{1200 m}^2 &= 1200 \div \text{1000 000 km}^2 = \text{0.0012 km}^2 \end{align}

Conversion between $\text{m}^2$ and $\text{mm}^2$

\begin{align} \text{1 m}^2 &= \text{1000 mm} \times \text{1000 mm} = \text{1000 000 mm}^2 \\ \text{3.1 m}^2 &= 3.1 \times \text{1000 000 mm}^2 = \text{3100 000 mm}^2 \\ \text{5600 mm}^2 &= 5600 \div \text{1000 000 m}^2 = \text{0.0056 m}^2 \end{align}

Conversion between $\text{cm}^2$ and $\text{mm}^2$

\begin{align} \text{1 cm}^2 &= \text{10 mm} \times \text{10 mm} = \text{100 mm}^2 \\ \text{3.1 cm}^2 &= 3.1 \times \text{100 mm}^2 = \text{310 mm}^2 \\ \text{86 000 mm}^2 &= 86 \ 000 \div \text{100 cm}^2 = \text{860 cm}^2 \end{align}

Conversion between $\text{m}^2$ and $\text{ha}$

\begin{align} \text{1 ha} &= \text{100 m} \times \text{100 m} = \text{10 000 m}^2 \\ \text{3.4 ha} &= 3.4 \times \text{10 000 m}^2 = \text{34 000 m}^2 \\ \text{45 000 m}^2 &= 45 \ 000 \div \text{10 000 ha} = \text{4.5 ha} \end{align}

Conversion between $\text{km}^2$ and $\text{ha}$

\begin{align} \text{1 km}^2 &= \text{1000 m} \times \text{1000 m} = \text{1000 000 m}^2 = 100 \times \text{10 000 m}^2 = \text{100 ha} \\ \text{1.23 km}^2 &= 1.23 \times \text{100 ha} = \text{123 ha} \\ \text{450 ha} &= 450 \div \text{100 km}^2 = \text{4.5 km}^2 \end{align}

Area of Rectangles

$$\text{Area of a Rectangle} = \text{base} \times \text{height}$$

Area of Squares

\begin{align} \text{Area of a Square} &= \text{side} \times \text{side} \\ &= \text{side}^2 \end{align}

Area of Triangles

$$\text{Area of a Triangle} = \displaystyle \frac{1}{2} \times \text{base} \times \text{height}$$

Area of Parallelograms

$$\text{Area of a Rectangle} = \text{base} \times \text{height}$$