Applications of the Unit Circle

Applications of the Unit Circle

The identify $\cos^2 \theta + \sin^2 \theta = 1$ is required for finding trigonometric ratios.

YouTube player

Example 1

Find exactly the possible values of $\cos \theta$ for $\sin \theta = \dfrac{5}{8}$.

\( \begin{align} \displaystyle
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \sin^2 \dfrac{5}{8} &= 1 \\
\cos^2 \theta + \dfrac{25}{64} &= 1 \\
\cos^2 \theta &= \dfrac{39}{64} \\
\therefore \cos \theta &= \pm \dfrac{\sqrt{39}}{8}
\end{align} \)

Example 2

If $\sin \theta = -\dfrac{2}{3}$ and $\pi \lt \theta \lt \dfrac{3 \pi}{2}$, find the exact values of $\cos \theta$ and $\tan \theta$.

The angle $\theta$ is in quadrant 3, so $\cos \theta \lt 0$ and $\tan \theta \gt 0$.
\( \require{AMSsymbols} \begin{align} \displaystyle \require{color}
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \dfrac{4}{9} &= 1 \\
\cos^2 \theta &= \dfrac{5}{9} \\
\cos \theta &= \pm \dfrac{\sqrt{5}}{3} \\
\therefore \cos \theta &= -\dfrac{\sqrt{5}}{3} &\color{red} \text{angle in quadrant 3}\\
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} \\
&= \dfrac{-\dfrac{2}{3}}{-\dfrac{\sqrt{5}}{3}} \\
&= \dfrac{2}{\sqrt{5}} \\
\therefore \cos \theta &= -\dfrac{\sqrt{5}}{3}, \tan \theta = \dfrac{2}{\sqrt{5}}
\end{align} \)

Example 3

If $\tan \theta = -3$ and $\dfrac{3 \pi}{2} \lt \theta \lt 2 \pi$, find the exact values of $\sin \theta$ and $\cos \theta$.

The angle $\theta$ is in quadrant 4, so $\sin \theta \gt 0$ and $\cos \theta \lt 0$.
\( \require{AMSsymbols} \begin{align} \displaystyle \require{color}
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} = -3 \\
\sin \theta &= -3 \cos \theta \\
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + (-3\cos \theta)^2 &= 1 \\
\cos^2 \theta + 9\cos^2 \theta &= 1 \\
10 \cos^2 \theta &= 1 \\
\cos \theta &= \pm \dfrac{1}{\sqrt{10}} \\
\cos \theta &= \dfrac{1}{\sqrt{10}} &\color{red} \text{angle in quadrant 4}\\
\sin \theta &= -3 \cos \theta \\
&= -3 \times \dfrac{1}{\sqrt{10}} \\
&= \dfrac{-3}{\sqrt{10}} \\
\therefore \sin \theta &= \dfrac{-3}{\sqrt{10}}, \cos \theta = \dfrac{1}{\sqrt{10}}
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *