Applications of the Unit Circle


The identify $\cos^2 \theta + \sin^2 \theta = 1$ is required for finding trigonometric ratios.
Example 1
Find exactly the possible values of $\cos \theta$ for $\sin \theta = \dfrac{5}{8}$.
\( \begin{align} \displaystyle
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \sin^2 \dfrac{5}{8} &= 1 \\
\cos^2 \theta + \dfrac{25}{64} &= 1 \\
\cos^2 \theta &= \dfrac{39}{64} \\
\therefore \cos \theta &= \pm \dfrac{\sqrt{39}}{8}
\end{align} \)
Example 2
If $\sin \theta = -\dfrac{2}{3}$ and $\pi \lt \theta \lt \dfrac{3 \pi}{2}$, find the exact values of $\cos \theta$ and $\tan \theta$.
The angle $\theta$ is in quadrant 3, so $\cos \theta \lt 0$ and $\tan \theta \gt 0$.
\( \require{AMSsymbols} \begin{align} \displaystyle \require{color}
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \dfrac{4}{9} &= 1 \\
\cos^2 \theta &= \dfrac{5}{9} \\
\cos \theta &= \pm \dfrac{\sqrt{5}}{3} \\
\therefore \cos \theta &= -\dfrac{\sqrt{5}}{3} &\color{red} \text{angle in quadrant 3}\\
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} \\
&= \dfrac{-\dfrac{2}{3}}{-\dfrac{\sqrt{5}}{3}} \\
&= \dfrac{2}{\sqrt{5}} \\
\therefore \cos \theta &= -\dfrac{\sqrt{5}}{3}, \tan \theta = \dfrac{2}{\sqrt{5}}
\end{align} \)
Example 3
If $\tan \theta = -3$ and $\dfrac{3 \pi}{2} \lt \theta \lt 2 \pi$, find the exact values of $\sin \theta$ and $\cos \theta$.
The angle $\theta$ is in quadrant 4, so $\sin \theta \gt 0$ and $\cos \theta \lt 0$.
\( \require{AMSsymbols} \begin{align} \displaystyle \require{color}
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} = -3 \\
\sin \theta &= -3 \cos \theta \\
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + (-3\cos \theta)^2 &= 1 \\
\cos^2 \theta + 9\cos^2 \theta &= 1 \\
10 \cos^2 \theta &= 1 \\
\cos \theta &= \pm \dfrac{1}{\sqrt{10}} \\
\cos \theta &= \dfrac{1}{\sqrt{10}} &\color{red} \text{angle in quadrant 4}\\
\sin \theta &= -3 \cos \theta \\
&= -3 \times \dfrac{1}{\sqrt{10}} \\
&= \dfrac{-3}{\sqrt{10}} \\
\therefore \sin \theta &= \dfrac{-3}{\sqrt{10}}, \cos \theta = \dfrac{1}{\sqrt{10}}
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Thank you a lot. The unit circlepicture was very helpful to me in solving cosine rules.
Thank you for reaching out and we are so glad that the post helped you. Please note that you can also find useful video lessons on our youtube channel, https://www.youtube.com/user/PrimeOnlineTutor, as well. Thanks again 🙂