Applications of the Unit Circle

The identify $\cos^2 \theta + \sin^2 \theta = 1$ is required for finding trigonometric ratios.

Example 1

Find exactly the possible values of $\cos \theta$ for $\sin \theta = \dfrac{5}{8}$.

\( \begin{align} \displaystyle
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \sin^2 \dfrac{5}{8} &= 1 \\
\cos^2 \theta + \dfrac{25}{64} &= 1 \\
\cos^2 \theta &= \dfrac{39}{64} \\
\therefore \cos \theta &= \pm \dfrac{\sqrt{39}}{8}
\end{align} \)

Example 2

If $\sin \theta = -\dfrac{2}{3}$ and $\pi \lt \theta \lt \dfrac{3 \pi}{2}$, find the exact values of $\cos \theta$ and $\tan \theta$.

The angle $\theta$ is in quadrant 3, so $\cos \theta \lt 0$ and $\tan \theta \gt 0$.
\( \begin{align} \displaystyle \require{color}
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + \dfrac{4}{9} &= 1 \\
\cos^2 \theta &= \dfrac{5}{9} \\
\cos \theta &= \pm \dfrac{\sqrt{5}}{3} \\
\therefore \cos \theta &= – \dfrac{\sqrt{5}}{3} &\color{red} \text{angle in quadrant 3}\\
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} \\
&= \dfrac{-\dfrac{2}{3}}{-\dfrac{\sqrt{5}}{3}} \\
&= \dfrac{2}{\sqrt{5}} \\
\therefore \cos \theta &= – \dfrac{\sqrt{5}}{3}, \tan \theta = \dfrac{2}{\sqrt{5}}
\end{align} \)

Example 3

If $\tan \theta = -3$ and $\dfrac{3 \pi}{2} \lt \theta \lt 2 \pi$, find the exact values of $\sin \theta$ and $\cos \theta$.

The angle $\theta$ is in quadrant 4, so $\sin \theta \gt 0$ and $\cos \theta \lt 0$.
\( \begin{align} \displaystyle \require{color}
\tan \theta &= \dfrac{\sin \theta}{\cos \theta} = -3 \\
\sin \theta &= -3 \cos \theta \\
\cos^2 \theta + \sin^2 \theta &= 1 \\
\cos^2 \theta + (-3\cos \theta)^2 &= 1 \\
\cos^2 \theta + 9\cos^2 \theta &= 1 \\
10 \cos^2 \theta &= 1 \\
\cos \theta &= \pm \dfrac{1}{\sqrt{10}} \\
\cos \theta &= \dfrac{1}{\sqrt{10}} &\color{red} \text{angle in quadrant 4}\\
\sin \theta &= -3 \cos \theta \\
&= -3 \times \dfrac{1}{\sqrt{10}} \\
&= \dfrac{-3}{\sqrt{10}} \\
\therefore \sin \theta &= \dfrac{-3}{\sqrt{10}}, \cos \theta = \dfrac{1}{\sqrt{10}}
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Comments

  1. Emmanuel Ekom

    Thank you a lot. The unit circlepicture was very helpful to me in solving cosine rules.

Your email address will not be published.