Example

A particle is projected at an angle of \( 45^{\circ} \) and a velocity of \( 60 \text{ ms}^{-1} \), and taking gravity as \( 10 \text{ ms}^{-2} \).
(a) Find the equation for the particle for horizontal displacement.
\( \begin{align} \displaystyle \require{AMSsymbols} \ddot{x} &= 0 \\ \dot{x} &= 60 \cos 45^{\circ} = 60 \times \frac{1}{\sqrt{2}} = 30 \sqrt{2} \\ x &= \int{\dot{x}} dt = \int {30 \sqrt{2}} dt = 30 \sqrt{2} t + C \\ 0 &= 30 \sqrt{2} \times 0 + C &\color{green}{\text{initially } t=0 \text{ and } x=0} \\ C &= 0 \\ \therefore x &= 30 \sqrt{2} t \end{align} \)
(b) Find the initial displacement of the vertical motion.
\( \displaystyle \dot{y} = 60 \sin 45^{\circ} = 60 \times \frac{1}{\sqrt{2}} = 30 \sqrt{2} \)
(c) Find the equation for the particle for vertical displacement.
\( \begin{align} \displaystyle \require{AMSsymbols} \ddot{y} &= -10 \\ \dot{y} &= \int {\ddot{y}} dt = \int {-10} dt = -10t + C \\ 30 \sqrt{2} &= -10 \times 0 + C \\ C &= 30 \sqrt{2} \\ \dot{y} &= -10 t + 30 \sqrt{2} \\ y &= \int {-10t+30 \sqrt{2}} dt \\ &= -5t^2 + 30 \sqrt{2} t + D \\ 0 &= -5 \times 0^2 + 30 \sqrt{2} \times 0 + D &\color{green}{t=0 \text{ and } y=0} \\ D &= 0 \\ \therefore y &= -5t^2 + 30 \sqrt{2} t \end{align} \)
(d) Find the time taken to reach the ground.
\( \begin{align} \displaystyle \require{AMSsymbols} y &= 0 &\color{green}{\text{to reach the ground}} \\ -5t^2 + 30 \sqrt{2} t &= 0 \\ 5t (-t+6\sqrt{2}) &= 0 \\ t &= 0 \text{ or } -t+6\sqrt{2} = 0 \\ \therefore t &= 6 \sqrt{2} \text{ seconds} \end{align} \)
(e) Find the horizontal distance that the particle travels.
\( \begin{align} \displaystyle \require{AMSsymbols} \text{horizontal distance at } t = 6 \sqrt{2} \\ \text{substituting } t = 6 \sqrt{2} \text{ into } x=30 \sqrt{2} t \\ x = 30 \sqrt{2} \times 6 \sqrt{2} = 360 \text{ metres} \end{align} \)
(f) Find the maximum height of the particle.
\( \begin{align} \displaystyle \require{AMSsymbols} \text{maximum height occurs at } \dot{y} &= 0 \\ -10 t + 30 \sqrt{2} &= 0 \\ y_{\text{max}} &= -5 \left(3\sqrt{2} \right)^2 + 30 \sqrt{2} \times 3 \sqrt{2} \\ &= 90 \text{ m} \end{align} \)
(g) Find the equation of the trajectory.
\( \begin{align} \displaystyle \require{AMSsymbols} t &= \frac{x}{30\sqrt{2}} &\color{green}{\text{equation of trajectory is obtained by eliminating } t} \\ y &= -5 \times \left( \frac{x}{30\sqrt{2}} \right)^2 + 30 \sqrt{2} \times \frac{2}{30\sqrt{2}} \\ \therefore y &= -\frac{x^2}{360} + x \end{align} \)
(h) Find the height of the particle when the horizontal distance is \( 10 \) m.
\( \begin{align} \displaystyle \require{AMSsymbols} \text{substitute } x &= 10 \text{ into } y = -\frac{x^2}{360} + x \\ y &= -\frac{10^2}{360} + 10 = 9.72 \text{ m} \end{align} \)
(i) Find the horizontal distance when the height of the particle is \( 50 \) m.
\( \begin{align} \displaystyle \require{AMSsymbols} \text{substitute } y &= 50 \text{ into } y = -\frac{x^2}{360} + x \\ -\frac{x^2}{360} + x = 50 \\ x^2-360x+18000 &= 0 \\ (x-60)(x-300) &= 0 \\ \therefore x &= 60 \text{ and } 300 \text{ m} \end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume