Applications of Maximum and Minimum


Example 1


Find the maximum value of $i=100\sin(50 \pi t +0.32)$, and the time when this maximum occurs.

\( \begin{align} \displaystyle
\dfrac{di}{dt} &= 0 \\
100\cos(50 \pi t+ 0.32) \times 50 \pi &= 0 \\
\cos(50 \pi t+ 0.32) &= 0 \\
50 \pi t+ 0.32 &= \dfrac{\pi}{2}, \dfrac{3\pi}{2}, \cdots \\
t &= \dfrac{1}{50 \pi}\Big(\dfrac{\pi}{2}-0.32\Big), \dfrac{1}{50 \pi}\Big(\dfrac{3\pi}{2}-0.32\Big) \cdots \\
t &= 0.0080, 0.028, \cdots \\
\dfrac{d^2i}{dt^2} &= -100\sin(50 \pi t + 0.32) \times 50^2 \pi^2 \\
\dfrac{d^2i}{dt^2} (t=0.0080) &= -100\sin(50 \pi \times 0.0080 + 0.32) \times 50^2 \pi^2 \\
&\lt 0 \text{ maximum}\\
\dfrac{d^2i}{dt^2} (t=0.028) &= -100\sin(50 \pi \times 0.028 + 0.32) \times 50^2 \pi^2 \\
&\gt 0 \text{ minimum}\\
i &= 100 \sin(50 \pi \times 0.0080+ 0.32) \\
&= 100 \\
\end{align} \)
Therefore the maximum value is $i=100$ when $t=0.0080$.


Related YouTube Video: https://youtu.be/YuyY4Uo8PYc

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *