Adding Multiples of Consecutive Odd Numbers by Mathematical Induction

(a)   Factorise \( 4x^3 + 18x^2 + 23x + 9 \).

\( \begin{align} \displaystyle
4x^3 + 18x^2 + 23x + 9 &= 4x^3 + 4x^2 + 14x^2 + 23x + 9 \\
&= 4x^2 (x+1) + 14x^2 + 14x + 9x + 9 \\
&= 4x^2 (x+1) + 14x(x+1) + 9(x+1) \\
&= (x+1)(4x^2 + 14x + 9) \\
\end{align} \)

(b)   Hence, prove by mathematical induction that , for \( x \ge 1 \),
\( 1 \times 3 + 3 \times 5 + 5 \times 7 + \cdots + (2x-1)(2x+1) = \dfrac{x}{3}(4x^2 + 6x – 1) \).

Step 1: Prove the statement is true for \( x=1 \).
\( \begin{align} \displaystyle
\text{LHS } &= 1 \times 3 = 3 \\
\text{RHS } &= \dfrac{1}{3} \times (4 \times 1^2 + 6 \times 1 – 1) = 3
\end{align} \)
Therefore it is true for \(x=1 \).
Step 2: Assume the statement is true for \( x=k \).
That is, \( 1 \times 3 + 3 \times 5 + 5 \times 7 + \cdots + (2k-1)(2k+1) = \dfrac{k}{3}(4k^2 + 6k – 1) \)
Step 3: Show the statement is true for \( x = k+1 \).
That is, \( 1 \times 3 + 3 \times 5 + 5 \times 7 + \cdots + (2k-1)(2k+1) + (2k+1)(2k+3) = \dfrac{k+1}{3}(4(k+1)^2 + 6(k+1) – 1) \)
\( \begin{align} \displaystyle \require{color}
\text{LHS } &= 1 \times 3 + 3 \times 5 + 5 \times 7 + \cdots + (2k-1)(2k+1) + (2k+1)(2k+3) \\
&= \dfrac{k}{3}(4k^2 + 6k – 1) + (2k+1)(2k+3) &\color{red} \text{by the assumption} \\
&= \dfrac{1}{3}(4k^3 + 6k^2 – k) + (4k^2 + 8k + 3) \\
&= \dfrac{1}{3}(4k^3 + 6k^2 – k + 12k^2 + 24k + 9) \\
&= \dfrac{1}{3}(4k^3 + 18k^2 + 23k + 9) \\
&= \dfrac{1}{3}(k+1)(4k^2 + 14k + 9) &\color{red} \text{by part (a)}\\
&= \dfrac{k+1}{3}(4k^2 + 14k + 9) \\
&= \dfrac{k+1}{3}(4k^2 + 8k + 4 + 6k + 6 -1) \\
&= \dfrac{k+1}{3}(4(k+1)^2 + 6(k+1) – 1) \\
&= \text{RHS} \\
\end{align} \)
So, the statement is true for \( x = k \) it is also true for \( x = k+1 \).
It is true for \( x =1 \), so the statement is true for \( x =2 \) and so for \( x = 3 \) and so on.
Thus the statement is true for all \( x \ge 1 \) by the process of mathematical induction.

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *