Absolute Value Inequalities

Absolute Value Inequalities

Absolute Value Inequalities are usually proved by the absolute value being greater than or equal to a certain value. The square of the value is equal to the square of its absolute value.

Proof of Absolute Value Inequalities

Prove \(|a| + |b| \ge |a+b|\).

\( \begin{aligned} \require{AMSsymbols} \require{color}
|a| &\ge a \text{ and } |b| \ge b &\color{red} |3| = 3 \text{ or } |-3| > -3 \\
|a||b| &\ge ab \\
2|a||b| &\ge 2ab \\
a^2 + 2|a||b| + b^2 &\ge a^2 + 2ab + b^2 \\
|a|^2 + 2|a||b| + |b|^2 &\ge (a + b)^2 &\color{red} a^2 = |a|^2 \\
|a|^2 + 2|a||b| + |b|^2 &\ge |a + b|^2 \\
(|a| + |b|)^2 &\ge |a + b|^2 \\
\therefore |a| + |b| &\ge |a + b| &\color{red} \text{square roots for both sides}
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *