4 Important Types of Absolute Value Equations

4 Important Types of Absolute Value Equations

There are 4 main types of absolute value equations regarding whether there are;

  • absolute value and a static value
  • absolute value and an expression involving unknown pronumerals
  • two absolute values on both sides
  • two absolute values and a value
YouTube player

Type 1: One Absolute Value and a Constant

Solve \( | x-2 | = 5 \).

\( \begin{aligned} \displaystyle
x-2 = 5 &\text{ or } x-2 = -5 \\
\therefore x = 7 &\text{ or } x = -3
\end{aligned} \)

Type 2: One Absolute Value and a Linear Expression

Solve \( | x-1 | = 2x+4 \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
(|x-1|)^2 &= (2x+4)^2 &\color{red} \text{squaring both sides} \\
(x-1)^2 &= (2x+4)^2 \\
x^2-2x + 1 &= 4x^2 + 16x + 16 \\
3x^2 + 18x + 15 &= 0 \\
x^2 + 6x + 5 &= 0 \\
(x+5)(x+1) &= 0 \\
x = -5 &\text{ or } x = -1 \\
\color{red} \text{Test } x = -5 \\
\text{LHS} &= |-5-1| \\
&= |-6| \\
&= 6 \\
\text{RHS} &= 2 \times -5 +4 \\
&= -6 \\
\text{LHS} &\ne \text{RHS} \\
\therefore x &\ne -5 \\
\color{red} \text{Test } x = -1 \\
\text{LHS} &= |-1-1| \\
&= |-2| \\
&= 2 \\
\text{RHS} &= 2 \times -1 +4 \\
&= 2 \\
\text{LHS} &= \text{RHS} \\
\therefore x &= -1
\end{aligned} \)

Type 3: Two Absolute Value Expressions

Solve \( | x-1 | = |3-x| \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
x-1 &= \pm(3-x) \\
x-1 &= 3-x \color{red} \cdots (1) \\
2x &= 4 \\
x &= 2 \\
x-1 &= -3+x \color{red} \cdots (2) \\
x-x &= -2 \\
0 &= -2 &\color{red} \text{no solution} \\
\therefore x &= 2 &\color{red} \text{from (a) and (2)}
\end{aligned} \)

Type 4: Two Absolute Value Expressions and a Constant

Solve \( | x+2 | + |x-3| = 7 \).

\( \begin{aligned} \displaystyle \require{AMSsymbols}\require{color}
-(x + 2)-(x-3) &= 7 &\color{red} \text{for } x \lt -2 \\
-x-2-x+3 &= 7 \\
-2x &= 6 \\
x &= -3 &\color{red} \text{this is OK for } x \lt -2 \\
(x + 2)-(x-3) &= 7 &\color{red} \text{for } -2 \le x \lt 3 \\
x+2-x+3 &= 7 \\
5 &\ne 7 &\color{red} \text{ no solution}\\
(x + 2) + (x-3) &= 7 &\color{red} \text{for } x \ge 3 \\
x+2+x-3 &= 7 \\
2x &= 8 \\
x &= 4 &\color{red} \text{this is OK for } x \ge 3 \\
\therefore x &= -3 \text{ or } 4
\end{aligned} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *