4 Important Types of Absolute Value Equations

There are 4 main types of absolute value equations regarding whether there are;

  1. absolute value and a static value
  2. absolute value and an expression involving unknown pronumerals
  3. two absolute values in both sides
  4. two absolute values and a value

Type 1: One Absolute Value and a Constant

Solve \( | x-2 | = 5 \).

\( \begin{aligned} \displaystyle
x-2 = 5 &\text{ or } x-2 = -5 \\
\therefore x = 7 &\text{ or } x = -3 \\
\end{aligned} \\ \)

Type 2: One Absolute Value and a Linear Expression

Solve \( | x-1 | = 2x+4 \).

Solve \( | x-1 | = 2x+4 \).

\( \begin{aligned} \displaystyle \require{color}
(|x-1|)^2 &= (2x+4)^2 &\color{red} \text{squaring both sides} \\
(x-1)^2 &= (2x+4)^2 \\
x^2 – 2x + 1 &= 4x^2 + 16x + 16 \\
3x^2 + 18x + 15 &= 0 \\
x^2 + 6x + 5 &= 0 \\
(x+5)(x+1) &= 0 \\
x = -5 &\text{ or } x = -1 \\
\color{red} \text{Test } x = -5 \\
\text{LHS} &= |-5-1| \\
&= |-6| \\
&= 6 \\
\text{RHS} &= 2 \times -5 +4 \\
&= -6 \\
\text{LHS} &\ne \text{RHS} \\
\therefore x &\ne -5 \\
\color{red} \text{Test } x = -1 \\
\text{LHS} &= |-1-1| \\
&= |-2| \\
&= 2 \\
\text{RHS} &= 2 \times -1 +4 \\
&= 2 \\
\text{LHS} &= \text{RHS} \\
\therefore x &= -1 \\
\end{aligned} \\ \)

Type 3: Two Absolute Value Expressions

Solve \( | x-1 | = |3-x| \).

\( \begin{aligned} \displaystyle \require{color}
x – 1 &= \pm(3-x) \\
x-1 &= 3-x \color{red} \cdots (1) \\
2x &= 4 \\
x &= 2 \\
x-1 &= -3+x \color{red} \cdots (2) \\
x-x &= -2 \\
0 &= -2 &\color{red} \text{no solution} \\
\therefore x &= 2 &\color{red} \text{from (a) and (2)} \\
\end{aligned} \\ \)

Type 4: Two Absolute Value Expressions and a Constant

Solve \( | x+2 | + |x-3| = 7 \).

\( \begin{aligned} \displaystyle \require{color}
-(x + 2) -(x-3) &= 7 &\color{red} \text{for } x \lt -2 \\
-x-2-x+3 &= 7 \\
-2x &= 6 \\
x &= -3 &\color{red} \text{this is OK for } x \lt -2 \\
(x + 2) -(x-3) &= 7 &\color{red} \text{for } -2 \le x \lt 3 \\
x+2-x+3 &= 7 \\
5 &\ne 7 &\color{red} \text{ no solution}\\
(x + 2) + (x-3) &= 7 &\color{red} \text{for } x \ge 3 \\
x+2+x-3 &= 7 \\
2x &= 8 \\
x &= 4 &\color{red} \text{this is OK for } x \ge 3 \\
\therefore x &= -3 \text{ or } 4 \\
\end{aligned} \\ \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *